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Abstract. Temperature dependence of single vortex magnetic moment in nanosize
superconducting particles is investigated in the framework of quasiclassical Eilenberger
approach. Such nanoparticles can be used for preparation of high-quality superconducting thin
films with high critical current density. In contrast to bulk materials where the vortex magnetic
moment is totally determined by flux quantum, in nano-sized specimens (with characteristic
size, D, much less than effective penetration depth, Acfy) the quantization rule is violated and
magnetic moment is proportional to DQ/)\ﬁff(T). Due to strong repulsion between vortices in
nanoparticles only a single vortex can be trapped in them. Because of small size of particles
the screening current of the vortex is located near the vortex core where the current is quite
high and comparable to depairing currents. Therefore, the superconducting electron density,
ns, depends on the current value and the distance from the vortex core. This effect is especially

important for superconductors having gap nodes, such as YBCO.

The current dependence of ns in nanoparticles is analogous to the Volovik effect in flux-
line lattice in bulk samples. The magnitude of the effect can be obtained by comparing the
temperature dependence of magnetic moment in the vortex and in the Meissner states. In the
last case the value of screening current is small and superconducting response to the external
field is determined by London penetration depth. Because of importance of nonlinear and
nonlocal effects, the quantum mechanical Eilenberger approach is applied for description of the
vortex in nanoparticles. The flattening of 1/)\§ff(T) dependence has been found. A comparison
of the theoretical results with experimental magnetization data in Meissner and mixed states of
YBCO nanopowders has been done. The presence of nonlinear and nonlocal effects in vortex
current distribution is clearly visible. The obtained results are important for the description of

pining in nanostructured high-7, thin films.

1. Introduction

Quasiclassical calculation of the density of states of a single vortex in an anisotropic
superconductor was performed in Ref. [1], and it was shown that if the gap itself is not
highly anisotropic, the Fermi surface anisotropy dominates, preventing direct observation of
superconducting gap features. This serves as a cautionary message for the analysis of scanning

tunneling spectroscopy data on the vortex state on Fe-based superconductors,

in particular

LiFeAs, which was treated explicitly. It was found that Doppler shift (DS) on quasiparticle
excitations on extended states (so-called ”Volovik effect” [2]) immediately induce zero energy
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excitations proportional to H from a smaller gap band in s* symmetry [3]. The structure
of a single vortex in a FeAs superconductor was studied in Ref. [4] in the framework of two
formulations of superconductivity for the recently proposed sign-reversed s-wave (s%) scenario:
(i) a continuum model taking into account the existence of an electron and a hole band, with a
repulsive local interaction between the two; (ii) a lattice tight-binding model with two orbitals
per unit cell and a next-nearest-neighbour attractive interaction. An impurity located outside
the vortex core has little effect on the local density of states peak, but an impurity close to the
vortex core can almost suppress it and modify its position. In Ref. [5] a linear regime at higher
fields and a limiting square root H behavior at very low fields were found. The crossover from
a Volovik-like v H to a linear field dependence can be understood from a multiband calculation
in the quasiclassical approximation assuming gaps with different momentum dependence on the
hole- and electron-like Fermi surface sheets.

In a direct scanning tunneling spectroscopy experiment the problem of the quantum vortex
phases in strongly confined superconductors was addressed [6]. The strong confinement regime is
achieved in grown ultrathin single nanocrystals of Pb by tuning their lateral size (diameter ~ 140
nm and height ~ 2.8 nm) to a few coherence lengths. Cren et. al. [6] used the phenomenological
Ginzburg-Landau theory for explanation of obtained results. However, the aim of our paper is to
apply microscopical Eilenberger approach to high-T, nanoparticles. The asymptotical behaviour
of the amplitude and the phase of the pairing potential is obtained. The Eilenberger equations
can be obtained from a full quantum mechanical approach (the Bogoliubov-de Gennes equations)
using an expansion in terms of a~!, where a = vp/va is the Dirac cone anisotropy, vg is the
Fermi velocity, and va is the quasiparticle velocity tangential to the Fermi surface at the node.
This expansion is quite reasonable for the description of high-T, superconductors, where o = 14
for YBaCuO and 20 for BiSrCaCuO [7]. The Eilenberger equations have been solved previously
[8] in the vortex core region. Here, we find the behaviour of the amplitude and the phase of
the pairing potential A(r) at long distances r from the vortex core. It is found that the DS
method works reasonably well at distances r > &y at low temperatures. The nonlocal effects
are important inside the core and for the description of effects of the fourfold vortex symmetry
outside the core. It is also shown that at higher temperatures the DS method should be modified
by including a pairing potential A(r) calculated self-consistently.

2. Quasiclassical approach

We consider an isolated two-dimensional vortex in a d-wave superconductor. The center of the
vortex is taken as the origin. The Fermi surface is assumed to be isotropic and cylindrical. To
obtain the quasiclassical Green functions we solve the quasiclassical Eilenberger equations for
the pairing potential A(0,r) = A(r) cos (20) exp (i¢) [8,9], where 6 is the angle between the k
vector and the a axis (or x axis) and exp (i¢) = (z + iy)/r. It should be noted here that the
spatial variation of the supercurrent and the d-wave order parameter induce small subdominant
s and dg, components in the pairing order parameter [10]. We are not considering these effects
because they can be included in a straightforward way in our calculations. Throughout this
paper, the energies and the lengths are measured in units of the uniform gap Ay at T = 0 and
the coherence length &y = vp /Ay, respectively.

For calculation it is convenient to parametrize the quasiclassical Green function via [9]
2a = 2b 1—ab

_:7_ T: — P— — 1
! 1+ab’ / 1+ab’ g ab’ (1)

where the anomalous Green functions f and fT are related to the usual notations as f =
fexp(i¢) and fT = flexp(—ip). The functions @ and b satisfy the independent nonlinear
Ricatti equations

Oya(wn,0,r) = A(0,1) — {2w, +i0) ¢ + A% (6, 1)alwn, 0, ) }a(wn, 0, 1), (2)
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Ob(wn, 0,1) = —A(0,1) + {20, + 06 + A6, 1)b(wn, 0,7) }b(wn, 6, 1), (3)

where w, = (2n + 1)7T is the fermionic Matsubara frequency, ) = d/dr| and J)¢ = —ry /2.
Here, we use the coordinate system @i = cos X + sin 0y, ¥ = —sin 0% + cos6y. Thus, a point
r = rX + y¥ is denoted as r = ri + 7, V. Eqgs. (2) and (3) include both the nonlocal effects
(8)a and 9)b terms) and the nonlinear effects (@ and b are nonlinear functions of 9 ¢). Since we
consider an isolated vortex in extreme type-II superconductors, the vector potential in Egs. (2)
and (3) can be neglected.

As has been shown [11] the solution of Egs. (2) and (3) is quite stable: after integration over a
length of a few &y it becomes almost independent of the initial values. This solution corresponds
to a simple exponential relaxation of the functions @ and b to their local ”steady-state” values
defined by the local values of the order parameter. Therefore, to find A at a given point, one
does not need the values of A at distances larger than several & along the trajectory. This
peculiarity is used for integration of Egs. (2) and (3) at long distances. First, we find some
approximative solution at the distance of several & from a given point and consider it as the
boundary condition. Next, we make the integration up to the given point by the Runge-Kutta
method with a variable step. To find this approximative boundary condition a linear expansion
a=ap+ar, b=by+ biry, and A=Ay + Aqr| is used near the given point. Substituting
this expansion to Egs. (2) and (3) and equating the coefficients under the same power of r we
obtain the set of equations for ag, a1, by and by.
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Figure 1. Asymptotical behaviour of the
amplitude of the pairing potential | A | at
long distances for ¢ = 0 and T'/T, = 0.9,0.95
and at T'/T, = 0.1 (solid lines). The dotted
lines in the main panel and the inset show
the values | A(T,r) | — | A(T) | obtained
from Eq. (4) at T/T, = 0.9 and 0.95 and from
Eq. (5) at T/T. = 0.1, respectively.

Figure 2. Behaviour of the amplitude of the
pairing potential at intermediate distances for
¢ = 0 and six values of T' /T, between 0.1—0.9.
The inset depicts the asymptotical behaviour
of the difference of the amplitude along 0 and
7 /4 directions, | A(¢p = 0)| — | A(¢p = 7/4) |
at T'/T, = 0.1.

Figure 1 shows the asymptotical behaviour of the amplitude of the pairing potential at long
distances for ¢ =0, T//T. = 0.9,0.95 in the main panel and 7'/, = 0.1 in the inset (solid lines),
obtained using Eilenberger approach. As can be seen from this figure |A| relaxes to its bulk
value (r — oo) as 1/r? with the power of 7 being independent of the temperature. The same
law of the relaxation has been obtained in the numerical solution of the Bogoliubov-de Gennes
equations [12] at "= 0 K. This relaxation law is different from the law [8], | A(r) | tanh(r).

The analytical expansion of the BCS solution near the infinity point has been obtained
perturbatively by Li, Hirschfeld and Wolfle (LHW theory) [10]. In Ginsburg-Landau regime
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near 7T, they found

B 1 ermu?(r) @
3/4+ epmu2(r)/A%(T) AXT)

AT, r)| = [A(T) |=

where ep is the Fermi energy and vg(r) is the superconducting electron velocity. At low
temperatures and long distances mvsvp < T' << A(T') the solution [10] is

2In2 epmvi(r) T

AT, r)| - |A(T)’:_1_[9g(3)T3_41n2eFva§(r]/A3(T)X AXT) A(T) ®)

where ((3) is the Riemann function. The dotted lines in the main panel and the inset of Fig. 1
shows the values | A(T,r)| — | A(T) | obtained from Eq. (4) at T/T. = 0.9 and 0.95 and from
Eq. (5) at T/T, = 0.1, respectively. As can be seen from this figure the slopes of asymptotics in
LHW theory agrees well with those obtained numerically by us (solid lines).

Figure 2 shows the behaviour of the amplitude of the pairing potential at intermediate
distances for ¢ = 0 and six values of T'/T, between 0.1 — 0.9. The behaviour of | A(¢ =
0)| — |A(¢ =n/4)| at T/T. = 0.1 and the change of the sign of this quantity is clearly visible
in the inset to Fig. 2.

3. Conclusions

The quasiclassical Eilenberger equations are solved numerically for an isolated two-dimensional
vortex for high-7, nanoparticles. In the core area our results reproduce those obtained
previously [8]. New asymptotical behaviour of the amplitude is obtained. Taking into account
the suppression of the pairing potential as in the self-consistent Doppler-shift method, good
agreement with the exact calculation is observed over the whole range of the radius. The
temperature dependencies of the magnetic moment for superconducting YBaCuO nanoparticles
was investigated (i) in the Meissner state and (ii) when the magnetic flux is trapped in the
particles. It was found that the ratio A\2,(0)/A% (T) obeys the power law behaviour with the
exponent n = 2.0+ 0.2 and n = 2.5 £ 0.05 in these two cases, respectively [13]. We connect this
behaviour with Volovik effect in nanoparticles.
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