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Abstract. Based on positive semidefinite operator properties, an exact ground state 
solution is deduced for a 2D Hubbard model with periodic boundary conditions on 
small samples. The obtained ferromagnetic behavior is used as a possible explanation 
of the ferromagnetism occurring in nano-samples made of non-magnetic but metallic 
materials. 

 
 

1. Introduction 
It is known that if a sample is constructed from non-magnetic metal (for example Au), and the 
size of the object is decreased to nanoscale values, the material can become ferromagnetic 
[1,2]. Below we provide a possible explanation for this effect, which requires only Coulomb 
repulsion between itinerant carriers, closed surface and quantum mechanical effects. For this 
reason we analyze a two dimensional L L×  square lattice at arbitrary but finite L size with 
periodic boundary conditions in both directions, containing itinerant electrons. The Coulomb 
repulsion in this many-body system is screened by the itinerant system, consequently is of 
short-range type, and hence is taken into account for simplicity by the on-site Coulomb 
repulsion alone. Below this Hubbard system is solved exactly for the ground state in a 
restricted region of the parameter space, obtaining a ferromagnetic solution for small L 
values. 

The solution procedure (see [3-7] for details) is based on positive semidefinite operator 
properties. The technique first transforms in exact terms the Hamiltonian Ĥ of the system in a 
positive semidefinite form ˆ ˆH P C= +  where P̂  is a positive semidefinite operator while C is 
a constant scalar. Since the spectrum of P̂  is bounded from below by the zero minimum 
eigenvalue, in the second step one deduces the exact ground state | gΨ 〉  by constructing the 
most general wave vector which satisfies the relation ˆ | gP 0Ψ 〉 = . The ground state energy 
becomes gE C= . The ground state turns out to be ferromagnetic if the number of electrons 

( , 2 )N L L∈  and has the form †

i
i,σ

ˆ| |g BΨ 〉 = 〉0∏  where | 0〉  represents the bare vacuum state, 

and †
,

ˆ
iB σ  are operators which extend along the whole system holding a specific vortex 

structure, being built up from linear combinations of creation Fermi operators with fixed spin 
projection σ acting on different sites of the lattice. The parameter space region where the 
solution emerges is not severely restricted, and flat bands in the bare band structure are not 
present. 

The periodic boundary conditions in two dimensions and both directions lead to a closed 
surface which reproduces a metallic grain, which, because of the Coulomb repulsion between 
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the carriers, holds mobile electrons only on its surface. Ĥ  has only on-site interaction terms 
and fixed hopping matrix elements, hence is not sensitive to folding and not requires a 
specific shape of the closed surface. If the grain is macroscopic ( 26~ 10L ) , the concentration 
range ( 2/ ~ 1/L L Lρ = ) where the effect emerges 2610 ~ 0ρ −=  is practically missing. But for 
nanoscale, for example L=10, leading to 1 /10ρ = , the effect is observable, and the nano-grain 
behaves as a ferromagnetic object. 

The remaining part of the paper presents the details of the calculation as follows: Sect. 2. 
describes the used Hamiltonian, Sect. 3. shows how the transformation of Ĥ  in positive 
semidefinite form is made, Sect. 4. presents the deduced ground state, and finally Sect. 5. 
containing the summary closes the presentation. 

 
2. The Hamiltonian 
We consider the Hubbard model on a 2D Bravais lattice with primitive vectors 
x, y and  lattice sites given by , where N LΛ = × L

.)c

.>

)

0
ˆ ˆ ˆ

UH H H= +
† † † †

0 , , , , , , , ,
,

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( .x y y x y xH t c c t c c t c c t c c Hσ σ σ σ σ σ σ σ
σ

+ + + + + − + −= + + + +∑ i x i i y i i x y i i y x i
i

 

                                        (1) , ,
ˆ ˆ ˆ , 0UH U n n U↑ ↓= ∑ i i

i

Here  are the nearest neighbor hopping amplitudes along the bonds in the x, (y) 

direction, and  are the next nearest neighbor hoppings taken along cell diagonals in 

 directions, while  represents the Hubbard interaction. 

( )x yt , t

(y x y xt , t+ −

, ( )+ −y x y x ˆ
UH

 Using the ,
1

ˆ (1/ )
N

ic N e ,ĉσ σ

Λ

Λ
=

−= ∑i
i

ki
k

( ) )

)] .

 expressions for the Fourier transforms, the kinetic 

part  has the k-space form 0Ĥ
* * ( ) *

0
,

ˆ [( ) ( ) ( i i i i i i
x x y y y x y xH t e t e t e t e t e t e

σ

+ − + − + + − +
+ += + + + + +∑ kx kx ky ky k y x k y x

k
 

       ( ) * ( ) †
, ,ˆ ˆ(  i i

y x y xt e t e c cσ σ
+ − − −

− −+ +k y x k y x
k k                  (2) 

For the simplest symmetric case 1 xt t t y= , 2 y x yt = tt x+ − , we obtain the following 
dispersion relation: 
    1 22 (cos cos ) 4 cos cos ,x y xt k k t k k= + +kε y         (3) 

which, except for the trivial case , cannot be made flat. 1 2t t 0= =

 
3. The positive semidefinite transformation of the Hamiltonian 
Let us consider on each site i of the lattice the block operator (or cell operator) defined on the 
cell constructed on the site i containing the sites ( , , , )+ + + +i i x i x y i y : 

    , 1 , 2 , 3 , 4
ˆ ˆ ˆ ˆ ˆA a c a c a c a c ,σ σ σ σ+ + += + + +i i i x i x y i y σ+ ,       (4) 

where the an coefficients are defined at the site denoted by n inside the cell (see Fig.1). 
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Fig. 1: The notations used in defining the ,Â σi  operator: The presented cell is defined at the 
site i, the x, y are the primitive vectors of the lattice, n denotes the sites inside the cell,  
are the hopping matrix elements connecting nearest-neighbor sites, while the next nearest-
neighbor hoppings  are present along diagonals plotted by the dashed lines. 

,t tx y

y x y xt  and t+ −

 
We note that since U>0, the Hubbard term is automatically positive semidefinite. Now the 
Hamiltonian from (1) becomes 
       †

, ,
,

ˆ ˆˆ ˆ ˆ ˆ ˆ
UH P KN A A H KNσ σ

σ

= − = + −∑ i i
i

       (5) 

if the following matching conditions are satisfied: 

                  (6) 
* * *
2 1 3 4 3 1

* * *
4 1 3 2 4 2

, ,

, .
x y

y y

t a a a a t a a

t a a a a t a a
+

−

= + =

= + =
x

x

2 .
Besides, the K coefficient in (6) is given by 
          (7) 2 2 2

1 2 3 4| | | | | | | |K a a a a= + + +

We have found several different solutions of this system of complex nonlinear equations. 
Here we present only the simplest one, the symmetric isotropic case. 

2
1 x y 1

2
2 y+x y-x 1

t   t  = t  = 2|a |  ,

t  t =t  = |a | ,
 

where the conditions { }( )i 0 i , , ,x y y x y x> ∈ + − 2 1t   t / 2t  and =  must hold. One can see 
that these conditions are not at all unrealistic and not too restrictive. The ground state energy 
is g 14E t N= − . 

 
4. The ground state 
Now we analyze the Hamiltonian (5), and look for a ground state of the form 

      .          (8) †
,

ˆ| |
N

g D σΨ 〉 = 〉∏ ii
i

0
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If such a state exists, in order to provide †
, ,

,

ˆ ˆ | gA Aσ σ
σ

0Ψ 〉 =∑ i i
i

 (e.g. to be in the kernel of the 

first term of Ĥ ), the ,Â σi  operator must satisfy 

      †
, ,

ˆ ˆ{ , }A Dσ σ 0=
ji j        (9) 

for all values of all indices. Furthermore, the wave function (8) is in the kernel of  if there 
are no doubly occupied sites in the system. Now we try to deduce the possible expression of 
the 

ˆ
UH

†
,D̂ σ jj  operator. 

 Starting the deduction of the †
,D̂ σ jj  operator, one must pay attention to the following aspect: 

Being only one type of fermionic operator present in Ĥ , namely ,ĉ σi , in order to obtain a 
†
,D̂ σ jj  satisfying (9), all operators ,Â σi  must share with †

,D̂ σ jj  zero, or at least two lattice sites. 

The main information here is that for all indices, the ,Â σi  operator must not touch †
,D̂ σ jj  in a 

single point. This is possible only if †
,D̂ σ jj  is extended along the whole system. 

 
 To satisfy this condition, let us consider a general expression for the †

,D̂ σ jj  operator 
collecting additive contributions from all lattice sites of the system. The mathematical 
expression of the †

,D̂ σ jj  operator then becomes 

     
L

† †
, i,j (i 1) ( j 1) ,

1 1

L
ˆ ˆ ,

i j
D x cσ σ− + −

= =

=∑∑jj x y      (10) 

where  are the primitive vectors, and in the  coefficients the i is the row index, while j 
is the column index. 

,x y i, jx

 Since in (9) one can have L2 different ,Â σi  operators for a fixed σ spin projection, in order 
to deduce the  coefficients from (9), one obtains 2Li, jx 2 different equations. The first one for 
example is the following: 

1 1,1 2 1,2 3 n,2 4 n,1a x  + a x  + a x  + a x  = 0  

Usually the solutions can be deduced for finite L, and the obtained result must be extended to 
arbitrary large L. We show in a simple symmetric and isotropic case that this can be 
performed, indeed. 
 One  operator obtained for this case at L=12 is presented in Fig. 2. As one can see from 
this figure, the displacement of particles inside 

†D̂
†
,D̂ σ jj  follows vortex lines. These lines are 

displaced around 4 equivalent vortex centers (denoted by dotted squares in the figure) whose 
position can serve in denoting different †

,D̂ σ jj  operators. For example the bottom-left site of a 

vortex center can serve for the j index of the operator †
,D̂ σ jj . The spin index σ j  of the operator 

†
,D̂ σ jj  is the same on all sites. Modifying the position of the vortex center, one finds new  

operators.   

†D̂
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Fig.2. A †
,D̂ σ jj  operator deduced at L=12. Black dots at an arbitrary site i are representing †

,ĉ σ− i , and 

white dots at a site i are representing †
,ĉ σ+ i  operators. All these contributions presented in the figure 

must be added providing the deduced †
,D̂ σ jj . The dotted lines represent a guide for the eyes. The dotted 

squares are representing 4 equivalent plaquettes in the construction of †
,D̂ σ jj . It can be seen that the 

extension of the solution to an arbitrary large system (for even L) is possible.  
 

 In obtaining the mathematical expression of the †
,D̂ σ jj  operator from Fig.2., one takes into 

consideration that black dots placed at an arbitrary site i are representing †
,ĉ σ− i  operators, 

while white dots at an arbitrary site i are representing †
,ĉ σ+ i  operators. Adding all 

contributions from Fig.2 one obtains the mathematical expression of the plotted  operator. 
Fig.2 shows that the  solution obtained for a 12

†D̂
†D̂ 12×  lattice can be generalized to an 

arbitrary large system (for even L). 
 Different linearly independent  operators can be obtained by modifying the position of 
the vortex center. Since for all (even) L, four equivalent vortex center positions exist, at first 

†D̂
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view it seems that  linearly independent  operators exist. However, if we directly 
check the linear independence, it turns out that only L of them are linearly independent. 

/ 4NΛ
†D̂

 The product of all linearly independent  operators leads to touching points between all 
components of the product. To enter also in the kernel of , the spin index for all 

†D̂
ˆ

UH †
,D̂ σ jj  

operators will be fixed to the same value σ σ=j , hence the ground state becomes 

      
†

,
j

ˆ| g D σ | 0 ,Ψ 〉 = 〉∏ j       (11) 

which represents a saturated ferromagnetic state. 
 
5. Summary 
By applying a technique based on the properties of positive semidefinite operators we 
analyzed a two dimensional system with periodic boundary conditions, where the Hubbard 
on-site Coulomb repulsion acts between the itinerant electrons. For small samples 
ferromagnetism has been found which disappears when the size of the system increases. The 
results provide a possible explanation for the emergence of ferromagnetism on metallic nano-
grains built up from a non-magnetic material. The deduced result does not require rigorous 
spherical surface, nor spin-orbit interaction: it demands only itinerant electrons on a closed 
surface, Coulomb repulsion between the carriers, and quantum mechanic many-body 
behavior. 
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