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Abstract. This work presents three different hybridization models based on the general schema 

of Local Search Heuristics, named Hybrid Successive Application, Hybrid Neighborhood, and 

Hybrid Improved Neighborhood. Despite similar approaches might have already been 

presented in the literature in other contexts, in this work these models are applied to analyzes 

the solution of the job shop scheduling problem, with the heuristics Taboo Search and Particle 

Swarm Optimization. Besides, we investigate some aspects that must be considered in order to 

achieve better solutions than those obtained by the original heuristics. The results demonstrate 

that the algorithms derived from these three hybrid models are more robust than the original 

algorithms and able to get better results than those found by the single Taboo Search. 

1.  Introduction 

The job shop scheduling problem (JSP) comes from manufacturing environments where jobs usually 

differ considerably in their processing sequence and times. This problem is classified as NP-Hard in 

strong sense [1] and it is widely known in the technical literature as one of the most difficult issues in 

the combinatorial analysis field. As stated by Zhang et al. [2], the JSP complexity can be illustrated by 

the fact that a relatively small instance with 10 jobs and 10 machines, proposed by Fisher and 

Thompson [3], remained unsolved for more than a quarter of a century and actually it remains difficult 

to solve optimally benchmarks with more than 20 jobs and 20 machines. Briefly, the JSP can be 

presented as follows: a set of 𝑚 machines,  𝑀𝑘 𝑘=1
𝑚 , and a set of 𝑛 jobs,  𝐽𝑖 𝑖=1

𝑛 , are considered. Each 

job 𝐽𝑖  must be processed exactly once in each machine 𝑀𝑘  in a predetermined order, which may vary 

from one job to another. Therefore, each job can be understood as a sequence of operations,  𝐽𝑖 =

 𝑂𝑖𝑘𝑠 𝑠=1

𝑚
, where 𝑂𝑖𝑘𝑠  is the operation of job 𝐽𝑖  that must be processed by the machine 𝑀𝑘𝑠  for a 

deterministic processing time, 𝑡𝑖𝑘𝑠 ≥ 0. Additionally: each machine can process only one job at a 

time; no job can be processed by two or more machines at the same moment; and preemption is not 

allowed. The objective of this problem is to determine the order in which jobs should be processed on 

each machine in order to minimize the length of time it takes to complete all operations for all jobs 

(usually referred to as makespan), without disregarding the restrictions imposed by the problem. Note 

that the dimensionality of each JSP instance can be specified as 𝑛 × 𝑚 and the total number of 

solutions is defined by  𝑛! 𝑚 . 

Due to its practical importance and its complex nature, the JSP has attracted the attention of many 

researchers, and a wide variety of algorithms has been proposed to solve this problem. According to 
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Jain and Meeran [4], these algorithms can be classified, in one hand, as optimization algorithms, when 

they guarantee the generation of optimal solutions (eventually at infinite time and generally involving 

a high computational cost), and on the other hand, as approximation algorithms, which provide good 

solutions (but not necessarily optimal) with a reasonable computational cost. Among the optimization 

algorithms are the family of constructive, or efficient, algorithms for which an optimal solution is built 

following a simple set of rules defined by the algorithm itself [5, 6, 7], and enumerative algorithms in 

which successive tentative solutions are generated, one by one, and elimination procedures are used in 

order to restrict the search space. 

The main enumerative algorithms are the Mathematical Programming Techniques, as the Mixed 

Integer of Manne [8], and the various Branch and Bound algorithms [9, 10]. The approximation 

algorithms are constituted by a great diversity of families of algorithms ranging from Priority Dispatch 

Rules [11] and Bottleneck Based Heuristics [12, 13, 14] to artificial intelligence methodologies, such 

as Constraint Satisfaction Techniques [15], Neural Networks [16] and Ant Colony Optimization 

algorithms [17], but their relative success is mainly attributed to a class of approximation algorithms 

named Local Search Heuristics, that includes the well known Simulated Annealing [18, 19], Genetic 

Algorithms [20, 21], Taboo Search [22, 23, 24] and, more recently, Particle Swarm Optimization [25, 

26, 27] heuristics, and until now no algorithm developed was able to find optimal solutions in an 

acceptable processing time for all the benchmark problems proposed in the literature. An extensive 

discussion of the family of algorithms applied to solve the job shop scheduling problem is presented 

by Blazewicz et al. [28] and by Jain and Meeran [4]. 

As each family of algorithms has its own positive and negative aspects, in order to take the best 

characteristics of the already existing algorithms and overcome their weaknesses, a possible approach 

consists in the use of hybrid algorithms, and this has been the focus of many authors. These hybrid 

algorithms can be classified as: blended, when generated by the insertion of specific procedures of a 

family of algorithms, as the taboo list of Taboo Search or the Metropolis criterion of  Simulated 

Annealing, into an algorithm belonging to another family of different nature; unblended, when 

generated by the simultaneous use of algorithms of different nature, i.e. deterministic and non-

deterministic or population-based and individual-based, so that each algorithm conserves its own 

characteristics; or mixed, when both blended and unblended procedures are applied. As an example of 

hybrid algorithms, we mention the work by Pezzella and Merelli [29], which based on the idea that the 

results generated by Taboo Search are tightly dependent on its initial solutions, proposed an unblended 

hybrid algorithm where the Shifting Bottleneck Procedure of Adams et al. [12] is applied in order to 

generate the initial solutions. Wang and Zheng [30] proposed an unblended hybrid algorithm where 

initially a Genetic Algorithm is applied in order to generate the initial population, then, for each initial 

element the Simulated Annealing performs a Metropolis sampling until the equilibrium condition is 

reached, and then the Genetic Algorithms uses the solution found by Simulated Annealing to continue 

the parallel evolution. Azizi and Zolfaghari [19] added a taboo list in their algorithm, named Adaptive 

Simulated Annealing, generating a blended hybrid algorithm that improved its performance 

significantly. Zhang et al. [2] presented an unblended hybrid algorithm where initially the Simulated 

Annealing is applied in order to find good solutions in a relatively wide search space and then the 

Taboo Search is applied in order to intensify the search process.  

In this work the Local Search Heuristics are designed in a general representation and, based on this 

representation, three hybridization models are presented and analyzed with two local search 

algorithms, a deterministic version of the Taboo Search algorithm, with the neighborhood structure 

proposed by Nowicki and Smutnicki [23] without back-propagation, and the Similar Particle Swarm 

Optimization algorithm suggested by Lian et al. [25]. As the main result, the present work shows that 

the complementary nature of Taboo Search and Particle Swarm Optimization guarantee the efficacy 

and robustness of the three models presented providing better results than the separate application of 

both algorithms. The remainder of the paper is organized as follows: an introduction for the Local 

Search Heuristics as well as the Taboo Search and Similar Particle Swarm Optimization algorithms 

used to test the hybridization models are given in sections 2, 3 and 4, respectively. Section 5 gives a 
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brief description of the three hybridization models investigated. Section 6 discusses the experimental 

results; and, finally, in section 7 conclusions are drawn, and some proposals for future research are 

suggested. 

2.  Local Search Heuristics 

The Local Search Heuristics - also referred to as neighborhood techniques - are characterized by the 

fact that, at each iteration, a set of new solutions is generated in the neighborhood of a set of "parent" 

ones by introducing small perturbations (usually called “moves”) of the latter (figure 1). Then a 

selection procedure eliminates a part of the available solutions in order to get the new set of "parent" 

solutions which will be used for the neighborhood generation of the next iteration. The process 

continues until a given stopping criterion is reached. 

According to the choice of the neighborhood generation techniques and selection criterion, 

different heuristics are obtained. As an example, in Taboo Search heuristic, at each cycle, the 

neighborhood is generated from a single parent solution, usually swapping the positions of two of its 

operations, and then the new parent solution is formed by the best solution within the neighborhood 

that does not belong to the taboo list. The Simulated Annealing heuristic usually applies the same 

neighborhood generation techniques that in Taboo Search but, at each cycle, just one neighbor is 

generated from a single parent solution and, if its makespan is smaller than the parent solution’s 

makespan, this solution replaces the parent one, otherwise, a Metropolis criterion is applied in order to 

define if the generated solution replaces or not the parent one. In the case of the Genetic Algorithms 

and Particle Swarm Optimization heuristics, at each cycle, the neighborhood is generated from a set of 

parent solutions (population), usually applying crossover and mutation operations on the pairs of these 

solutions. The basic difference of both methods is the way in which these pairs of solutions are 

selected. While the Genetic Algorithm usually applies a selection criterion based on a probability  

related to an efficiency index of each solution, the selection criterion applied by the Particle Swarm 

Optimization is always based on the best solution ever generated and the best solution visited by each 

individual.  

 

 

Figure 1. Scheme of Local Search Heuristics. 

 

Additionally, the choice of the specific method that generates the initial parent solutions, the 

specific operator that must be applied to generate the neighborhood and the specific selection and stop 

criteria, allow generating a wide variety of algorithms for each family. As stated previously, in this 

work two algorithms were chosen to be applied in the hybrid models, a deterministic version of the 
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Taboo Search algorithm, with the neighborhood structure proposed by Nowicki and Smutnicki [23] 

without back-propagation, and the Similar Particle Swarm Optimization algorithm suggested by Lian 

et al.[25]. In the following sections, both of them will be presented. 

3.  Taboo Search algorithm 

The Taboo Search (TS) heuristic was originally developed by Glover [31] and its first application to 

JSP is attributed to Taillard [22]. In its classical form the TS algorithm can be described as follows: at 

first an initial solution is generated randomly or by a constructive method, which is stored as the 

current and the best solutions. Then, at each iteration, a neighborhood is generated by applying 

“moves” (i.e., small perturbations) to the current solution and so this solution is replaced by a non 

taboo neighbor, i.e. a solution in the neighborhood generated (usually the best one), under the 

restriction that its generating movement doesn't belong to the taboo list. This last one is a vector 

containing the inverse movements that generated the last 𝑡 current solutions, and is introduced as a 

way to prevent the search process of getting trapped in a locally optimal solution – where t is the size 

of taboo list and is always referred as “tenure”. An aspiration criterion can be defined in order to allow 

the replacement of the current solution by a solution that belongs to the taboo list when it is useful for 

the search (i.e. when this solution is better than the best solution found). The best solution is replaced 

by the current solution if the latter presents a smaller makespan than the first one. The process 

continues until a given stopping criterion is satisfied. 

 

 

generate an initial solution 

store the initial solution as the current and the best solutions 

while stopping criterion is not satisfied 

 generate a neighborhood 

 replace the current solution by the not taboo best neighbor 

 update the taboo list adding the inverse move that generated the new current solution 

 and removing the oldest one (when taboo list size is bigger than t) 

 if the makespan of the current solution is smaller than the makespan of the best solution  

  replace the best solution by the current solution 

 end if 

end while  
return the best solution 

 

Figure 2. Taboo Search algorithm. 

 

Figure 2 presents a general TS algorithm. In this scheme, the neighborhood generation process has 

a direct impact on the efficiency of the method and several neighborhood structures have been 

presented in the literature (i.e., see [22, 23, 24]). Among them, the one usually referred as to N5 

introduces the real breakthrough in both efficiency and effectiveness for the job shop problem. This 

method generates a neighborhood substantially smaller than the others and was chosen to be applied in 

this work. The N5 method, the best solution selecting process, the taboo list, and the stopping criterion 

of the TS algorithm applied in this work will be described in more detail in the following sections. 

3.1.  N5 neighborhood generation method 

Given a solution, a critical path can be defined as a sequence of operations wherein:  

 

 the last element in this sequence is the last operation completed. So its final processing time is 

the makespan of the respective solution; 
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 for each operation in this sequence, except for the first one, its immediately preceding 

operation is either: the operation that precedes it in the machine order or in the task order. 

Between the two, it  is the one which presents the higher finishing time that is chosen;  

 the start time of the first operation of this sequence is zero.  

 

It is important to note that a solution can contain more than one critical path, as happens when there 

are two or more operations that are finalized last, or when operations preceding an operation on the 

machine and task orders are completed at the same moment. In their article, Nowicki and Smutnicki 

[23] argue that the choice of the critical path does not have a strong influence on the final result. The 

authors suggest that it should be chosen randomly. In this study, the critical path is selected in 

accordance with the following priorities: 

 

 if two operations are finalized last, the operation selected will be the one belonging to the 

lowest machine index; 

 if the operations, which precede an operation in machine and task orders, finish at the same 

moment, the operation selected will be the one above in the task order. 

 

The critical path can also be subdivided into blocks of operations where each block consists of a 

subsequence of successive operations that must be processed by the same machine. By the N5 method, 

a neighborhood is formed by swapping the first two (and the last two) operations of each block on a 

critical path (where each swap will generate a new neighbor). For the first block, only the last two 

operations are swapped and for the last block, only the first two operations are swapped. If any block 

is formed by only one operation, no exchange will be made and if it is formed by two operations only 

one exchange must be performed. (for more details see Nowicki and Smutnicki [23]). 

3.2.  Selecting the best non-taboo solution 

In the TS operator applied in this work, a taboo list consists of a vector containing the moves inverse 

to those used to generate the latest 𝑡 current solutions (where 𝑡 is a parameter, the value of which can 

be adjusted). Thus, the best neighbor (the solution chosen as the new current solution) is the solution 

with the smallest makespan, whose motion generator is not on the taboo list. Additionally, an 

aspiration criterion is considered which allows the current solution to be replaced by a solution whose 

motion generator belongs to the taboo list if the makespan of this solution is less than that of the best 

solution found so far. Should there be a tie for the best solution, the current solution remains the same. 

3.3.  Stopping criterion 

In this algorithm the iterative process stops when after 𝑁𝑖𝑡𝑒 iterations the best solution found is not 

updated, i.e. no new current solution has a lower makespan than that of the best solution found. 𝑁𝑖𝑡𝑒 is 

a parameter, the value of which can be adjusted. 

4.  Similar Particle Swarm Optimization 

Particle Swarm Optimization (PSO) is a population-based heuristic developed by Kennedy and 

Eberhart [32]. In this method, each solution is interpreted as the position of a particle (individual of the 

swarm), which is represented by a 𝐷-dimensional vector, where 𝐷 is the number of variables that must 

be determined. The trajectories of the particles look for the position corresponding to an optimal 

solution. According to the representation given in figure 3, the implementation of PSO can be 

described as follows: the initial position of the swarm is randomly generated and then the individuals 

or potential solutions, named particles, search for an optimum by updating their own positions. At 

each iteration the position of each particle is adjusted according to its velocity which is randomly 

generated towards the best position visited by the particle  𝑝best   and the best position visited by the 

swarm  𝑔best  . At iteration 𝑘, for each particle 𝑖 (1 ≤ 𝑖 ≤ 𝑁𝑃, where 𝑁𝑃 represents the total number 

of particles), the velocity 𝑣𝑖  and the position 𝑥𝑖  can be updated by the following equations: 

MOIME 2015 IOP Publishing
IOP Conf. Series: Materials Science and Engineering 83 (2015) 012001 doi:10.1088/1757-899X/83/1/012001

5



 

𝑣𝑖 𝑘 + 1 = 𝑤 × 𝑣𝑖 𝑘 + 𝑐1𝑟1  𝑝best 𝑖
 𝑘 − 𝑥𝑖 𝑘  + 𝑐2𝑟2 𝑔best  𝑘 − 𝑥𝑖 𝑘   (1) 

 

𝑥𝑖 𝑘 + 1 = 𝑥𝑖 𝑘 + 𝑣𝑖 𝑘 + 1  (2) 

 

The inertia weight 𝑤, first proposed by Shi and Eberhart [33], is used to control exploration and 

exploitation. A larger 𝑤 can prevent particles to becoming trapped in local optima, and a smaller 𝑤 

encourages particle exploitation of the same search space area. The constants 𝑐1 and 𝑐2 are learning 

factors used to decide whether particles prefer moving toward a 𝑝best  or 𝑔best  position. Usually 

𝑐1 = 𝑐2 = 2. The 𝑟1 and 𝑟2 are random variables between 0 and 1. 

 

 

initialize a population of particles with random initial positions and velocities on 𝐷 

dimensional space 

while stopping criterion is not satisfied 

 update the velocity of each particle, according to Eq. (1) 

 update the position of each particle, according to Eq. (2) 

 evaluate the fitness value of each position according to the desired optimization fitness 

 function and at the same time, update 𝑝best  and 𝑔best  position if necessary 

end while  

return the best global solution (𝑔best ) 

 

Figure 3. Particle Swarm Optimization algorithm for problems in continuous space. 

 

The original PSO algorithm was developed to solve continuous optimization problems. When 

working with combinatorial optimization problems, we have to modify the representation of the 

positions and the way how velocity and movement are adjusted (some examples of adaptations of the 

original PSO applied for JSP can be found in [25, 26, 27]). Lian et al. [25] proposed a Similar Particle 

Swarm Optimization (SPSO) algorithm for the JSP where the position of each particle is mapped by 

the work procedure code (see below), which considers only feasible solutions, and its velocity and 

position are adjusted according to the following equations: 

 

𝑣𝑖 𝑘 + 1 = 𝑝best  𝑖
 𝑘  Θ 𝑔best  𝑘  (3) 

 

𝑣𝑖 𝑘 + 1 =  
𝑣𝑖 𝑘 + 1    𝑖𝑓  𝑚𝑢𝑡𝑖 = 0

𝑀 𝑣𝑖 𝑘 + 1      𝑖𝑓 𝑚𝑢𝑡𝑖 = 1
  (4) 

 

𝑥𝑖 𝑘 + 1 = 𝑥𝑖 𝑘  Θ 𝑣𝑖 𝑘  (5) 

 

𝑥𝑖 𝑘 + 1 =  
𝑥𝑖 𝑘 + 1    𝑖𝑓  𝑚𝑢𝑡𝑖 = 0

𝑀 𝑥𝑖 𝑘 + 1      𝑖𝑓 𝑚𝑢𝑡𝑖 = 1
  (6) 

 

where Θ and 𝑀 𝑥  represents, respectively, the crossover and mutation operators applied in Genetic 

Algorithms and the boolean variable 𝑚𝑢𝑡𝑖  is a flag destined to indicate if the mutation operation is 

(𝑚𝑢𝑡𝑖 = 1) or not (𝑚𝑢𝑡𝑖 = 0) applied on particle 𝑖. At each iteration, 𝑁mut  particles are randomly 

chosen to suffer a mutation operation:  
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 𝑚𝑢𝑡𝑖 = 𝑁mut

𝑁𝑃

𝑖=1

 (7) 

 

The mutation probability (𝑝mut ), i.e. the percentage of particles that suffer mutation at each 

iteration, is defined by:  

 

𝑝mut =
𝑁mut

𝑁𝑃
× 100 (8) 

 

The authors tested four crossover (C1 – C4) and ten mutation (M1 – M10) operators on three 

benchmark problems proposed by Fisher and Thompson [32] named FT6, FT10 and FT20, and the 

SPSO algorithm has shown to be more efficient than the Genetic Algorithms in the solution of job 

shop scheduling problems. Despite the SPSO presenting better results than the Genetic Algorithms, 

these results have not yet reached the desired purpose and, additionally, like the TS heuristics, the 

SPSO is quite sensitive to the value of its control parameters, as, for example, the percentage of 

particles that suffer a mutation operation by iteration in which small values lead the algorithm to 

falling in a cyclic process, and the large values impaired its convergence. 

From all four crossover and ten mutation operators we chose to show in this work the results of the 

application of the M7 (single job moving-inserting) mutation operator and a new crossover operator, 

described as C1 with 1 floating point. The working procedure code and the reported operators are 

described in the following sections. 

4.1.  Work procedure code 

In the work procedure code (WPC), a schedule is represented by a sequence of the indexes of jobs in 

which each job index is repeated by the number of its corresponding operations. A corresponding 

operation can be known by the job index and the position that it appears, i.e. the first time that a job 

index appears in the sequence represents the first operation of this job, the second time that the same 

job index appears in the sequence represents the second operation of this job and so on. For example: 

in a job shop problem with 3 jobs and 3 machines a possible solution can be represented as follows: 

 

WPC (1 3 2 1 2 3 3 2 1) 

 

In WPC, the position of each operation determines the order of precedence in which it should be 

processed. So the sequence, in which tasks should be processed on each machine, is determined by 

taking operations for their respective machines in the same order as that in which they appear in the 

solution given by WPC. One inconvenience of this form of representation is that two apparently 

different solutions, when plotted by WPC, can portray the same solution (when represented by the 

sequence of tasks on each machine). Observe that the N5 neighborhood generating method is based on 

the critical path. Therefore, for the application of the TS operator, the solution should be represented 

by the Task Sequence Code (TSC) (i.e., the sequence of tasks on each machine). During the iterative 

process, the representation of the solutions is converted to WPC or TSC, depending on the algorithm 

applied. 

4.2.  C1 with one floating point 

A crossing point is randomly selected along the length of the first chromosome (sequence of 

operations). The sub-section of jobs from the first position to the crossing point is copied into the 

offspring. The remaining places of the offspring are filled up by taking in order each legitimate gene 

of the second chromosome. 

4.3.   Single job moving-inserting (M7) 
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One moving and one inserting point are randomly selected along the length of the chromosome then 

the job at moving point are moved and placed in the inserting point. 

5.  Hybridization models 

The hybridization idea presented in this work is based on the schema of Local Search Heuristics 

(figure 1) and consists basically on generating a hybrid neighborhood by applying two or more 

neighborhood generation operators. Table 1 presents some of the possible neighborhood generation 

operators, classified according to their nature. These operators can be the same neighborhood 

generation operators applied in the Local Search Heuristics, as previously mentioned, or any other 

algorithm capable of transforming a group of parent solutions in a new group of solutions, through the 

perturbation of the first, as in the case of the own Local Search Heuristics when using as their 

respective initial solutions, the set of parent solutions. The basic difference between both kinds of 

operators is that, in the first case, the hybrid algorithm generated will be blended and, in the last case, 

unblended. 

 

Table 1. Neighborhood generation operators. 

 
Critical path swap 

operators 

Crossover 

operators 
Mutation operators 

Local Search Heuristics 

New solutions are 

generated by 

introducing small 
perturbations in 

just one solution 

New solutions are 

generated by 

crossing two 

solutions 

Deterministic 

N1, N2, N3, N4, N5, 

N6 – Zhang et al. 
[24] 

  Taboo Search  

Nondeterministic  

C1, C2, C3, 

C4 – Lian et 

al. [25] 

M1, M2, M3, M4, 
M5, M6, M7, M8, 

M9, M10 – Lian et 

al. [25] 

Taboo Search, 

Simulated 

Annealing 

Genetic 
Algorithms, 

Similar Particle 

Swarm 

Optimization 

 

Usually the hybridization of neighborhood generation operators enables the generation of 

algorithms more robust, i.e. less sensitive to the adjustment of parameters and able to produce better 

results than each single algorithm separately, provided that the operators used in the hybridization are 

of different nature. In this study the TS algorithm (as presented in section 3) and the SPSO algorithm 

(as presented in section 4) were chosen as operators for generating the hybrid neighborhood because 

they present different aspects in different directions. This choice was based on the following 

considerations: 

 

 The TS heuristic improves every single parent solution in order to bring it to a minimum point 

that can be local or global. The SPSO heuristic generates an iteration between the parent 

solutions, converging the solutions to an optimal point (local or global) common to all 

solutions; 

 The TS heuristic can be easily presented as deterministic while the random aspect is a 

fundamental and essential part of the SPSO heuristic; 

 The TS algorithm with the neighborhood generation method N5 proposed by Nowicki and 

Smutnicki [23] is still one of the most effective and efficient algorithms for solving the JSP; 

 Despite the SPSO and Genetic Algorithms heuristics presenting similar characteristics, the 

SPSO algorithm proposed by Lian et al. [25] has achieved better results than the Genetic 

Algorithms proposed in the literature; 

MOIME 2015 IOP Publishing
IOP Conf. Series: Materials Science and Engineering 83 (2015) 012001 doi:10.1088/1757-899X/83/1/012001

8



 Despite another PSO algorithms were developed to solve JSP, in the SPSO algorithm 

proposed by Lian et al. [25] it is not necessary to set the parameters of the original PSO (i.e., 

the inertia weight and the learning factors). 

 

This work analyzes some of these possibilities of combining the operators in order to select which 

are the main aspects to be considered to achieve an improvement in the results of the original 

algorithms. The following sections present the hybridization schemes analyzed in this paper, 

respectively defined as Hybrid Successive Application (HSA), Hybrid Neighborhood (HN) and 

Hybrid Improved Neighborhood (HIN). 

5.1.  Hybrid Successive Application 

In the Hybrid Successive Application scheme (figure 4) a set of initial parent solutions is randomly 

generated. Then, at each cycle, the first neighborhood generation operator (NGO) is applied to the 

parent solutions and the other NGO are successively applied on the set of solutions furnished by the 

preceding one. The final neighborhood provided in each cycle corresponds to the neighborhood 

generated by the last NGO. 

 

 

Figure 4. Scheme of the Hybrid Successive Application. 

5.2.  Hybrid Neighborhood 

In the Hybrid Neighborhood scheme (figure 5) in each cycle all the NGO are applied on the same set 

of parent solutions (set of initial solutions of the cycle) and then the set of parent solutions of the next 

cycle is randomly selected from the group of solutions furnished by all the neighborhood generation 

operators. 

 

Constructive 

method 
Parent solutions 

Final solution 

Neighborhood 1 

New parent solutions 

Selection criterion 

Stop criterion is 

satisfied ? 

Yes 

No 

Neighborhood 

generation operator 𝑛 

Neighborhood 2 Neighborhood 𝑛 

Neighborhood 

generation operator 2 
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Figure 5. Scheme of the Hybrid Neighborhood. 

5.3.  Hybrid Improved Neighborhood 

In the Hybrid Improved Neighborhood scheme (figure 6), the same procedure of the Hybrid 

Successive Application is used, but the set of new parent solutions of a cycle derives from a random 

selection on the group of all solutions obtained by the different neighborhood generation operators. 

 

 

Figure 6. Scheme of the Hybrid Improved Neighborhood. 

6.  Computational results 

To analyze the robustness and efficiency of the three hybridization models proposed in this work, the 

schemes presented in Figures 4, 5 and 6 were tested on the benchmark problems FT6 (with 6 jobs and 

6 machines), FT10 (with 10 jobs and 10 machines) and FT20 (with 20 jobs and 5 machines) proposed 

by Fisher and Thompson [34] and problems ABZ5 and ABZ6 (with 10 jobs and 10 machines), and 

ABZ7, ABZ8 and ABZ9 (with 20 jobs and 15 machines) proposed by Adams et al. [12] with the 
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algorithms TS, as presented in section 3, and SPSO, as presented in section 4, respectively, and 

inverting their orders. For each benchmark problem twelve initial solutions (initial configurations) 

were randomly generated and they were used as initial solutions of all algorithms for all the tests 

applied. As SPSO is a population based algorithm and TS is an individual based one, the first was 

applied on the set of solutions and the last was applied on every single solution. As the SPSO is non-

deterministic, in order to minimize the distortion generated by the random appearance, each test was 

repeated five times. 

Initially, a sensitivity analysis of the parameters “maximum number of iterations without upgrade” 

of the TS algorithm and “number of iterations” of the SPSO algorithm was performed. The results 

obtained demonstrated that when the SPSO algorithm starts with random positions (solutions), the 

method searches into the space delimited by the initial positions a local optimum and the percentage of 

particles that suffer mutation (𝑝mut ) holds a fundamental role in the convergence process. Small 

values lead the algorithm to a cyclic process and large values impaired its convergence. When 

applying successively the TS and the SPSO algorithms, as TS walks through local minima, the SPSO 

tends to converge to the best point found by the previous algorithm and, unless 𝑝mut  has a large value, 

the SPSO is not able to improve the results of TS. When setting large values for 𝑝mut , the SPSO 

allows TS to escape from local minima and the fast convergence of TS leads to a global optimal point. 

However, this method is quite sensitive to the 𝑝mut  parameter. Otherwise, when SPSO is applied with 

no more than one iteration, the hybrid algorithms tend to combine the global convergence property of 

SPSO with the local convergence property of TS, and all results tends to converge to a global 

optimum. When applying the HN and the HIN schemes we can observe the same behavior except that 

the SPSO tends to concentrate on the best available solution. 

Based on this observation a sensitivity analysis of the parameters “maximum number of iterations 

without upgrade” and “tenure” of TS algorithm, and “percentage of particles that suffer mutation” of 

the SPSO algorithm, as well as a convergence analysis based on the parameter “cycles number” of the 

hybrid algorithms presented here, were applied fixing the parameter “number of iterations” of SPSO 

as one. In the next sections we present the results of these analyses - all results generated and an 

extensive discussion of these analyses are presented in Fraga [35]. 

6.1.   Sensitivity analysis with respect to the maximum number of iterations without upgrade of the 

makespan 

First, a sensitivity analysis was applied on the single TS on each one of the set of initial solutions 

defined, fixing the value of the parameter “tenure” to eight and setting the parameter “maximum 

number of iterations without upgrade” to the values 10, 10
2
, 10

3
, 10

4
, 10

5
 and 10

6
. For all benchmarks 

analyzed, excepted FT6 for which the method found optimal solutions with no more than 10 iterations, 

the results demonstrated that the TS method is quite sensible to the initial solution, as it generated 

different results for each one. For all initial solutions of the defined set, it was identified a saturation 

point (ST) for the value of the parameter analyzed in which the method falls into cyclic processes and 

the result cannot be upgraded (figure 7).  It was observed that, for most of the initial solutions, ST is 

about 10.000 for the problems with 10 jobs and 10 machines (FT10, ABZ5 and ABZ6) and about 

100.000 for the problems with 20 jobs and 15 machines (ABZ7, ABZ8 and ABZ9), but some solutions 

presented smaller or larger ST. 

Afterwards, the same sensitivity analysis was applied to the three hybrid models proposed here 

with ten cycles, fixing the value of parameters “tenure” of TS and “percentage of particles that suffer 

mutation” of SPSO, respectively at eight and 20%, and setting the parameter “maximum number of 

iterations without upgrade” of TS to the values 10
2
, 10

3
, 10

4
 and 10

5
. Despite the hybrid algorithms not 

being able to find optimal solutions for all benchmark problems, when applied with ten cycles and the 

defined small set of initial solutions, they demonstrated to be able to significantly improve the results 

found by Taboo Search (figure 8), even when the order of their neighborhood generation operators 

was inverted (figure 9). For the 20 × 15 problems it was also observed that these improvements are 

smaller when the value of the parameter analyzed is increased. For the majority of the analyses, the 
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Hybrid Successive Application was the model that generated the best results, especially when 

considering small values for the parameter analyzed.  

 

 

Figure 7. Sensitivity analysis with respect to the “maximum number of iterations without 

upgrade” of the Taboo Search algorithm for the FT10 problem with the following fixed parameter: 

tenure = 8. 

 

 

Figure 8. Sensitivity analysis with respect to the “maximum number of iterations without 

upgrade” of the Hybrid Models (HSA, HIN and HN) for the FT10 problem with the following 

fixed parameters: tenure = 8; percentage of particles that suffer mutation = 20%; cycles number = 

10. Comparison between the best, the mean and the worse results generated by the three hybrid 

models and the best result generated by the Taboo Search algorithm. 
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Figure 9. Sensitivity analysis with respect to the “maximum number of iterations without 

upgrade” of the Hybrid Models (HSA, HIN and HN), with inverted order of the neighborhood 

generation operators, for the FT10 problem with the following fixed parameters: tenure = 8; 

percentage of particles that suffer mutation = 20%; cycles number = 10. Comparison between the 

best, the mean and the worse results generated by the three hybrid models and the best result 

generated by the Taboo Search algorithm. 

6.2.  Sensitivity analysis with respect to the Taboo Search tenure 

The sensitivity analysis with respect to the value of the “tenure” parameter was also first applied to the 

single TS algorithm on each solution of the set of initial solutions generated for each different 

benchmark, fixing the value of the parameter “maximum number of iterations without upgrade” of TS 

at 10
3
 for the problem FT20, at 10

4
 for the problems FT10, ABZ5 and ABZ6, and at 10

5
 for the 

problems ABZ7, ABZ8 and ABZ9. Also the value of the parameter “tenure” was set from 6 to 15. The 

results confirmed the high sensitivity of the algorithm to the initial solution and also demonstrated that 

it is quite sensitive to the tuning of the tenure parameter. Different initial solutions presented different 

sensitivity for the tuning of this parameter, as can be seen in solution 6 and in solution 11 generated 

for the FT10 problem (figure 10). After the same analysis was applied to the hybrid models fixing the 

value of the parameter “maximum number of iterations without upgrade” of TS at 1O
3
 for the problem 

FT20, at 10
4
 for the problems FT10, ABZ5 and ABZ6 and at 10

5
 for the problems ABZ7, ABZ8 and 

ABZ9, the value of parameter “percentage of particles that suffer mutation” of SPSO at 20%, and 

setting the value of the parameter “tenure” from 6 to 15. The results demonstrated that, despite the 

hybrid algorithms also presenting sensitivity to the parameter analyzed, this sensitivity is smaller and, 

when the neighborhood generation operators TS and SPSO were applied, in this order, even the worst 

result from the five runs for which each test was applied was better or, at least, equal to the best result 

provided by the single TS, when applied to each component of the same set of initial solutions and 

with the same parameters. Additionally, the results of best solutions, in most cases, significantly 

improved the best result provided for the single TS. As the value of the parameter “maximum number 

of iteration without upgrade” of TS was fixed as 10
4
 (for 10 × 10 problems) or 10

5
 (for 20 × 15 

problems), both models the HSA and the HN presented the best results.  
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Figure 10. Sensitivity analysis with respect to tenure of the Taboo Search algorithm for the FT10 

problem with the following fixed parameter: maximum number of iterations without upgrade = 

10
4
. 

 

 

Figure 11. Sensitivity analysis with respect to the tenure of the Hybrid Models (HSA, HIN and 

HN) for the FT10 problem, with the following fixed parameters: maximum number of iterations 

without upgrade = 10
4
; percentage of particles that suffer mutation = 20%; cycles number = 10. 

Order of neighborhood generation operators = TS – SPSO. Comparison between the best, the mean 

and the worse results generated by the three hybrid models and the best result generated by the 

Taboo Search algorithm. 

 

6.3.  Sensitivity analysis with respect to the SPSO mutation probability 

The mutation probability sensitivity analysis was applied on the hybrid models fixing the value of 

the parameter “maximum number of iteration without upgrade” of TS at 1O
3
 for the problem FT20, at 
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10
4
 for the problems FT10, ABZ5 and ABZ6 and at 10

5
 for the problems ABZ7, ABZ8 and ABZ9, the 

value of parameter “tenure” of TS at eight, and setting the value of the parameter “percentage of 

particles that suffer mutation” of SPSO from 0 to 100%. In this analysis it was identified a small 

variation of the results generated for each value of the parameter analyzed. As the hybrid models were 

applied with no more than one iteration of the algorithm SPSO by cycle, this variation must be main 

attributed to the random nature of the hybrid models more than to the sensitivity to the parameter 

analyzed. 

 

 

Figure 12. Sensitivity analysis with respect to the “percentage of particles that suffer mutation” of 

the Hybrid Models (HSA, HIN and HN) for the FT10 problem, with the following fixed 

parameters: maximum number of iterations without upgrade = 10
4
; tenure = 8; cycles number = 10. 

Order of neighborhood generation operators = TS – SPSO. 

6.4.  Convergence analysis 

For the convergence analysis, the three hybrid algorithms were tested fixing the value of parameters 

“tenure” of TS and “percentage of particles that suffer mutation” of SPSO, respectively, at eight and 

20%, the value of the parameter “maximum number of iterations without upgrade” of TS at 10
2
 for 

FT20 problem, at 10
3
 for FT10, ABZ5 and ABZ6 problems and at 10

4
 for ABZ7, ABZ8 and ABZ9 

problems and fixing the maximum number of cycles for FT20, FT10, ABZ6 and ABZ7 problems at 

10
2
 and at 10

3
 for ABZ7, ABZ8 and ABZ9. For the FT20 and the 10 × 10 problems (FT10, ABZ5 and 

ABZ6) all the solutions converged to the optimal solutions with a smaller number of cycles. In the 

case of the 20 × 15 problems (ABZ7, ABZ8 and ABZ9), despite the hybrid algorithms demonstrated 

to be able to improve the results found by the single Taboo Search, the computation time has exceeded 

the maximum time we allowed for our numerical experiments (one week) without finding the optimal 

solution and without completing the limit defined by the number of cycles. This failure may be 

connected to the fact that all experiments involved a small set of initial solutions (12). 

7.  Conclusions 

In this work, we presented three possible schemes of hybridization based on Local Search Heuristics, 

defined as Hybrid Successive Application, Hybrid Neighborhood, and Hybrid Improved 

Neighborhood. These models were tested applying a Taboo Search (TS) and a Similar Particle Swarm 

Optimization (SPSO) algorithms as their neighborhood generation operators. Many sensitivity 

analyzes have been performed on the single TS and SPSO as well as on the hybrid algorithms derived 
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from the three hybrid approaches presented. The results confirmed the following conclusions. The 

single TS and SPSO algorithms are very sensitive to the tuning of their respective parameters. Also, 

the results of the single TS algorithm strongly depends on the initial solutions. The TS and SPSO 

algorithms have complementary nature, however, when they are applied in the hybrid schemes, we 

constated that the SPSO must be used with no more than one iteration. 

In addition, the hybrid algorithms have shown good properties of robustness and accuracy. The 

results demonstrated the ability of the hybrid algorithms to improve the original techniques 

significantly, generating better results at acceptable computing times. The convergence to an optimal 

solution has been obtained in all the experiments, except for the 20 × 15 problems, where the 

computational time has exceeded the previously fixed limit (one week). Since all the tests involved a 

small set of initial solutions, increasing the size of this set may significantly improve the results. This 

will be the subject of further research.  

Another important remark is that, as previously observed, the hybridization is more efficient when 

the algorithms involved have complementary characteristics. We suggest that the algorithms must be 

classified into classes according to some general criterions and the hybridization has to be performed 

by using elements of different classes. This point will also be matter of future work. 
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