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Abstract. As far as optimal feedback controllers for nonlinear systems are concerned,
Hamilton-Jacobi(HJ) equations play a key role in the design process. However, we sometimes
meet the HJ equations in non-differential situations, which are extremely difficult to solve
analytically /numerically. This paper proposes a simple design method to attack such optimal
control problems using differentiable solutions of the associated HJ equations. By simulation,
we demonstrate the proposed method useful in a non-differentiable situation.

1. Introduction

As far as optimal feedback controllers for nonlinear systems are concerned, Hamilton-
Jacobi(HJ) equations play a key role in the design process. However, we sometimes meet
the HJ equations in non-differential situations, such as unicycle or car-like vehicle problems,
underwater control problems, bilinear dynamical system problems, and so on. Unfortunately,
those HJ equations are extremely difficult to solve analytically/numerically. A lot of researchers
have been tackling such non-differentiable control problems. However, no powerful technique
has been found so far. Note that, especially in the non-differentiable HJ equations, viscosity
solutions [1] are generally used instead of differentiable solutions. As far as viscosity solutions
are concerned, no effective computational tool exists so far in solving non-differentiable HJ
equations.

This paper proposes a simple design method to attack the optimal control problems with
non-differentiable HJ equations, based on two steps. The first step is to find non-differentiable
points in the state space (say, Algorithm I). This is not an easy task. We propose a unique
idea to find such points in an easy fashion. The second step is to divide a whole state space
into subspaces, based on the result given by Algorithm I, where non-differentiable points are
not contained. Now that we are in a differentiable situation, we apply the existing HJ solvers
for each subspace.

The paper is organized as follows. The optimal control problem in question is formulated in
Section 2. In Section 3, the simple but effective design method is proposed with differentiability
assumptions. Section 4 demonstrates the usefulness of the proposed method. Section 5 gives
the conclusion.
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2. Problem formulation
Consider the following dynamical system (1), with the performance index (2) to be minimized.

T = f(z)+g(r)u (1)
J = / (I(x) + u" Ru)dt (2)
0

where, z € R" is a state vector, and u € R™ is an input variable. f and g are smooth functions
with f(0) = 0.

Even with a standard type of optimal control problems, we sometimes meet the non-
differentiable HJ equations in deriving feedback controllers. Of course, there are some approaches
to such non-differentiable situations. However, we propose a new technique which is completely
different from the existing methods to attack such problems. What we are going to do is to
select the non-differentiable points in the state space, and take away those points in order to
apply the existing differentiable methods. How can we find these non-differentiable points? This
is a major issue that we have to solve. For this reason, we give some preliminaries. In the sequel,
we use " Distribution” and ”Tangent space”. Those are given as follows.

Tangent space: Given a manifold M, construct a subspace at x € M, using all the tangent
vectors of z € M. The subspace is called ” Tangent space”, denoted by 7T, (M)”.

Distribution: Consider a linear variational system, 02 = Adx + Y -, bjdu;, which is given
around a point (z,u) with a nonlinear system & = f(x,u), and construct a subspace using
the following vectors, by, Aby, ---, A" 'by, -+, bpAby, ---, A" 'b,. The subspace is
called ”Distribution”, denoted by ”Span(by, Aby,--- , A" by, by, Aby,--- , A" 1by,)" or
"Span(A(z))”. Here,

A(.’L‘) = (bla Abla T aAnilbla e abma Abma o aAnilbm)- (3)

Roughly speaking, Distribution is in a sense related to a controllability matrix. By using
Distribution, we can check the reachability of the linearized variational systems.

3. Design method

First, we describe how to find the non-differentiable points in the state space. Next, based
on these non-differentiable points, we propose our design method dividing the whole state space
into the subspaces, where the subspaces do not contain the non-differentiable points. Because
of that, we can apply existing methods which are developed for differentiable situations.

3.1. Non-differentiable points
We describe an algorithm to find non-differentiable points.

Algorithm I
Step 0: Set D; = @ and Dy = @.
Step 1: Derive the following variational system around the point (z;, ;) with the nonlinear

system (1).
0t = Ajdz + Bidu (4)
Step 2: Construct ”Distribution” at (z;,u;), using the variational system as mentioned in
Section 2.

Step 3: Construct ”Tangent space” at x;, using the manifold with /(z) as mentioned in Section
2.
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Step 4: If Tangent space in Step 3 contains Distribution in Step 2, update Dy by letting z;
become an element of Dy, and go to Step 5. Otherwise, go to Step 5.

Step 5: If every point of (x;,u;) is selected, go to Step 6. Otherwise go back to Step 1.

Step 6: If D; contains no element or the origin only, update D; by re-setting D; = @ and go
to Step 7. Otherwise, go to Step 9.

Step 7: Construct Distribution at (z;,u;) as in Step 2. If Distribution is not equivalent to the
whole state space, update Dy by letting x; become an element of Do, and go to Step 8.
Otherwise, go to Step 8.

Step 8: If every point of (x;,u;) is selected, stop. Otherwise, go back to Step 7.
Step 9: Update Dy by re-setting Do = span(A(z)) with (z;,u;) = (0,0).

3.2. Design Method

Now, we have found all of the non-differentiable points. Therefore, we are in a position to
propose a design method for nonlinear systems with non-differentiable HJ equations, based on
Algorithm T.

Design Method
Step 1: Apply Algorithm I to the nonlinear system (1) with the performance index (2).

Step 2: Choose a practical region € for the control design in the state space, in order to
construct a feedback controller over the such a region.

Step 3: Based on D; and D5, divide the practical region into subregions which do not contain
non-differentiable points in each region.

Step 4: Apply the Galerkin approximation method [2] to each subregion, together with basis
functions appropriately chosen.

Step 5: Construct a feedback controller over the whole practical region, based on differentiable
solutions of subregions given in Step 4 of the design method.

4. Simulation

Four examples are given to show how Algorithm I works in a control design process. Two
more examples are given to demonstrate how effective the proposed design method works. One
of them is shown in this section.

Consider the following bilinear system (5) with the performance index (6)

L l=loa ] ©
JZ/()OO(5w?+5x§+u%+u§)dt (6)

where a viscosity solution exists in the associated HJ equation. As mentioned before, it would
be a difficult task to obtain viscosity solutions analytically /numerically. We tackle this problem,
according to the design procedure given in section 3. Applying Algorithm I, we obtain Dy and
Do, as follows.

D1 = {:El|.’L‘l,1 = 0}, DQ = {:El|.’L‘l,2 = 0} (7)

Based on such D; and D-, we attack an associated HJ equation.

L(oVN? 22 (VN> _ .,
_Z (8—1‘1> _Z<a—$2> +5$1 +5$2—0 (8)
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By the Galerkin approximate method with the practical region Q@ = {(z;,u;) | =1.5 < 21 <
1.5,—1.5 < 29 < 1.5}, we obtain the solution in Fig.1, where non-differentiable points can be
shown on the line of 1 = 0. A comparison with the optimal solution is given in Fig.2, where
the optimal one is given numerically by the reference [3]. The results show that the proposed
and optimal ones are sufficiently close from a practical point of view.

Figure 1. Value of Cost

— Optimal
---- Proposed

Figure 2. Phase Portrait
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5. Conclusion

This paper has proposed an algorithm to find non-differentiable points (Algorithm I), and a
design method based on the results given by Algorithm I. Numerical simulation is given in order
to demonstrate the usefulness of the proposed method of control design.
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