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Abstract. Aiming at the shortcomings of clustering performance of many traditional text 

clustering methods, a clustering algorithm based on maximum entropy principle is proposed. 

The algorithm uses the cosine similarity measure cited in the traditional text clustering 

algorithm SP-Kmeans, and then introduces the maximal entropy theory to construct the 

maximal entropy objective function suitable for text clustering. The maximum entropy 

principle is introduced into the spherical K-mean text clustering Algorithm. The experimental 

results show that compared with DA-VMFS and SP-Kmeans algorithms, in addressing the 

large number of text clustering problem. The performance of CAMEP clustering algorithm is 

greatly improved, and has a good overall performance. 

1. Introduction  

With the growth of the World Wide Web and various text resources, people's desire for rapid, accurate and 

comprehensive access to information is increasing. Text clustering technology has received more and more 

attention and research as unsupervised clustering technology. In present, text clustering technology has 

become the key technology of automatic text categorization [1]. 

In a certain vector space model, the text can be expressed as a vector of high dimensional space by 

appropriate preprocessing, which has sparsity and Non-negative [1].In recent years, research shows that the 

text data also has the direction [2].This feature allows the text vector data to be normalized before clustering, 

and then the clustering analysis is performed. The SP-Kmeans [3] algorithm uses the cosine similarity to 

measure the correlation of the text vectors.  

In recent years the great entropy principle has also been widely used in natural language processing [7] and 

text classification [8]. Surian D [9] in pointed out that the text clustering algorithm based on mixed vMF 

density model movMF in the text clustering process hidden variable entropy changes with self-annealing 

characteristics, Shi Zhong [10, 11] The deterministic annealing technique is used to improve the clustering 

performance of the movMF [14] algorithm, which provides the basis for introducing the maximum entropy 

principle in the traditional text clustering algorithm. 

2. Algorithm for Maximal Entropy Clustering Algorithm and Spherical K-means Clustering Algorithm  

Using the statistical physical degradation process, Yasuda proposed a deterministic annealing technique [4], 

which is an important branch of natural law. It is based on the annealing process, the optimal solution of the 

optimization problem into a series of temperature changes with the physical system of free energy function is 

minimal. Karayianni [5] Introduced deterministic annealing techniques into clustering. In this algorithm, a 

very large entropy clustering algorithm is proposed, and its essence is to use the deterministic annealing 

technique to find the objective function of clustering minimum. In a variety of versions of the maximum 
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entropy clustering algorithm MEC [15], although the description is different, but only the formal differences. 

The MEC of the maximal entropy clustering algorithm is introduced only in the literature [6]. 

For the dataset 1{ } d

NX x x R ，…， , 1{ }NV v v ，…， is the K clustering center, ,,2 , { }d

i i j k nv R K N U u    
, k n is 

a membership matrix, ,i ju
for each sample belongs to the center of the probability. 
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ix is divided into K clusters ( 1,2, )iG i  …，K ,and the clustering of each cluster is obtained by the 

maximum entropy fuzzy clustering algorithm MEC Center, the following objective function is minimized.  
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Where
2|| || ( ) ( )T

j i j i j ix v x v x v    
,T is the Lagrange multiplier. The above equation can also be 

expressed as: 

                                                                      ( , ) ( )T cJ J U V TH u                                                                (3) 
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For a large T, the main attempt is to maximize the entropy H(u), the system is maintained at a higher 

temperature, with the decrease of T, entropy for the reduction of distortion, when T tends to zero, the 

minimum Jc (U, V) Directly obtain a non-random (hard) solution. Thus the Lagrangian multiplier there is 

equivalent to the temperature coefficient of the deterministic annealing technique, also known as the annealing 

coefficient. 

The basic steps of the maximum entropy clustering algorithm MEC are as follows: 

Initialization: Given the initial clustering center 
0 0 0 0 0

1 2 3 K{ , , , }V v v v v …， , and the fuzzy partitioning 

matrix ,{ }i jU u , l is the number of iterations, the maximum number of iterations M, set the annealing 

coefficient T, the minimum annealing coefficient MinT threshold . 

Update 
1
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 with the following formula: 
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Update 
1i

iv 

 with the following formula: 
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If T is minimized, stop; otherwise adjust the annealing factor T = T-! T to (2). 

MEC algorithm can avoid the local minimum and get the global minimum, which has been widely used. 

However, one of the defects of the MEC algorithm is to use the European metric. For the high-dimensional 

vector data, the direction feature of the text vector is more important than the size feature, so the MEC is not 

suitable for clustering the text data. 

3. The Clustering Algorithm Based on Maximum Entropy Principle 

In this paper, the maximum entropy principle is introduced into the spherical mean clustering, and the 

clustering algorithm based on maximum entropy principle CAMEP is deduced for text 

clustering. 1 2{ , , }KV v v v …， is the K clustering center for the sample 

set 1{ , } d

NX x x R …， , 1 2 K1(1 ), { , , }T

i ix x i N V v v v    …， and K N is a membership matrix. ,i ju is the degree of membership 
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of the sample jx belonging to the K center, the value of which is different from the hard division of the 

spherical K mean, but the fuzzy division between 0 and 1 truly reflects the data points and the center of the 

class Practical relationship, and meet
,

1

1
K

i j

i

u



.At this point the global maximum cost function can be 

considered: 

                                                                 ,
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                                                                (6) 

In order to obtain the maximum value of the equation (6), we can get the maximum entropy principle by 

avoiding the local minimum and get the global minimum. In this case, we can define the minimized objective 

function: 

                                                   , , ,

1 1 1 1
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Note that the form of Eq. (7) is similar to Equation (2), and entropy terms are introduced. (2) Using the 

European measure, and (7) uses a cosine similarity measure. Equation (7) can also be expressed as: 
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,T is a Lagrange multiplier, which can be taken according to the need, 

and its value has some influence on the final clustering result. ( )H u is the entropy of the membership matrix. 

When the value of
1

T is large, minimizing ( , )TJ U V actually needs to maximize the entrop ( )H u .As the
1

T value 

decreases, the minimized ( , )TJ U V turns to the minimized c ( , )J U V , thus achieving global minima. The peak of the 

objective function under the condition of
,

1

1
K

i j

i

u



, the minimum value of ( , )TJ U V is obtained. And define the 

following Lagrangian objective function ( , , , )L u v   : 
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There is a partial derivative of each center vector iv in ( , , , )L u v   : 
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Let equation (10) be equal to 0, then there is: 
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Since
1T

i iv v 
, by (11) can be further introduced: 
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For ( , , , )L u v    in each ,i ju
partial guide: 
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Let equation (13) be equal to 0, then there is: 
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The minimum process (9) is the clustering algorithm based on maximum entropy principle (CAMEP). It is 

noted that the Lagrange multiplier T is equivalent to the inverted annealing coefficient, When the T value is 

small, the system is maintained at a higher temperature, and the process of T increases is the process of system 

annealing, and the minimum point of the objective function is obtained by a series of changes with 

temperature T. 

A complete description of the CAMEP algorithm is given below. 

Step1:Giving
0 0 0

0 1 2 K{ , , }v v v v …，
, and the fuzzy partitioning matrix ,{ } =0i j k nU u 

,the maximum 

number of iterations is M, the set annealing coefficient is T, the maximum annealing coefficient is MaxT, the 

threshold is , the number of iterations is r = 0; 

Step 2: Find the update 
( 1)

,

l

i ju 

according to the formula (15); 

Step 3: Update the center
( 1)l

iv 

according to formula (12); 

Step 4: If T is equal to the minimum, then stop; otherwise, if
( 1) ( )max || ||l l

i i iv v   
or l> M, adjust the 

annealing coefficient T T T  , go to step 2. 

4. Experimental Results and Analysis 

First, the evaluation criteria of evaluating the performance of text clustering are described, then the various 

data sets and experimental setups of the experiment are described. Finally, the experimental results of each 

data set are given and analyzed. 

4.1 Algorithm Performance Evaluation Criteria 

The performance evaluation criteria of the algorithm based on the objective function are the internal 

evaluation standard and the external evaluation standard.  If vi is the center of the normalized class Ki, the 

ACS is defined as follows: 

                                                                                                                              (16) 

Where N is the number of samples, and the larger the ACS value, the higher the total tightness of the data and 

the center vectors. In addition, for text clustering experiments, the text of the class is often known, so the 

external evaluation criteria of the general use of mutual information (NMI).The NMI value is defined as 

follows: Assuming that X represents a known text class random variable, and Y represents the class random 

variable of the clustering result, then: 

                                                                                                                                 (17) 

Where X (Y) is the mutual information of variables X and Y, H (X) and H (Y) are the entropy of variables X 

and Y.Because clustering often does not know the number of clusters in advance, the NMI value can be used 

to evaluate the performance of the algorithm when the number of different clusters is better. The higher the 

NMI value, the more accurate the clustering result is. The NMI value is 1, marked exactly the same. 

4.2 Description of The Experimental Datasets 

The experiment uses 20 - Newsgroups data sets and some of the eight datasets from the CLUTO [12] text 

clustering toolbox. The data set contains the number of samples ranging from 690 to 19949, the smallest data 

dimension is 8 261 dimension, the largest is 43586 dimension, the actual number of clusters is 3, the largest is 

20. From the above characteristics we can see that these data sets reflect the characteristics of the text datasets. 

Where the NG20 data is averaged from 20 different newsgroups, and the Bow toolkit [13] prepares the 20- 
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Newsgroups text with 19949 vector text data. NG17-19 is a subset of NG20 data, the actual number of 

categories for the three categories, each category includes nearly 1 000 from the political news of the text, and 

according to the characteristics of these news is divided into three categories, the previous clustering 

algorithm on the The clustering results of the data set show that the clustering of the data set is more difficult 

because of the overlap between classes and classes. The other data comes from the CLUTO toolbox [12], 

which has been pre-processed as vector text data. A detailed description of the data set is shown in Table 1. 

It should be noted that the balance in Table 1 ( is the total number of document is the total number of 

terms, k is the number of classes) is the balance of the data, that is, the ratio of the number of classes 

containing the minimum number of texts to the number of texts in the class containing the maximum number 

of texts, which reflects the balance between the class and the class in the data set. The NG20, NG17-19, and 

sports data sets used in the experiment are more balanced, ie, the number of samples is similar in each class, 

and the balance of other data sets is poor. 

4.3 Experimental Results and Analysis 

In order to test the maximum entropy sphere K-means algorithm proposed by the author, the clustering results 

of the above data sets are compared with each other when the number of clusters and the number of clusters 

are different. In the experiment, the algorithm is run 20 times for each case, and the NMI average of its 

clustering results is taken as the final evaluation value. At the same time, the specific NMI mean and the 

deviation table of the experimental results and the average cosine similarity of the clustering results degree. 

Experiments show that the maximum entropy spherical K-means algorithm has achieved satisfactory results 

for these data sets. 

4.3.1. Comparison of clustering effects of each algorithm when fixed clustering number.From the clustering 

results NMI of the different data sets in Table 2 and Table 3, it can be seen that the SP-Kmeans algorithm has 

the lowest clustering NMI value for each data set, and its clustering effect is obviously lower than the other 

two clustering algorithms. The clustering effect of using CAMEP is better than that of DA-SPKM. 

 

Table 1. Summary of text datasets 

data Source   K balance 

NG20 20 Newsgroups 19949 43586 20 0.991 

NG17-19 3 overlapping subgroups from NG20 2998 15810 3 0.998 

Reviews San Jose Mercury (TREC) 4069 18483 5 0.998 

Sports San Jose Mercury (TREC) 8580 14870 7 0.636 

Tr54 TREC 690 8261 10 0.088 

La1 LA Times(TREC) 3204 31472 6 0.290 

La12 LA Times(TREC) 6279 31472 6 0.282 

La2 LA Times(TREC) 3705 31472 6 0.274 

 

Table 2. NMI results on NG20, NG17-19, reviews, sports, and tr54 datasets 

 NG20 NG17-19 reviews sports tr45 

K 20 3 5 7 10 

SP-KMeans 0.550 0.050 0.340 0.100 0.530 0.100 0.560 0.130 0.600 0.090 

DA-VMFS 0.570 0.030 0.460 0.010 0.560 0.090 0.620 0.050 0.680 0.050 

CAMEP 0.590 0.010 0.470 0.060 0.620 0.020 0.640 0.004 0.690 0.030 

 

In addition, the authors find that the NMI deviation of the CAMEP clustering algorithm is much smaller 

than that of the SPK-Means and DA-VMF algorithms in most cases, which means that the algorithm of 

maximal entropy spherical clustering overcomes the sensitivity to initialization. In the clustering of the 

difficult data set NG17-19, the author finds that the NMI value of the algorithm CAMEP can reach 0.53, but 

the NMI value is very large, and its inner reason needs further study. 
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Table 3. NMI results on classic la1, la12, and la2 datasets 

 classic la1 la12 la2 

K 4 6 6 6 

SP-KMeans 0.540 0.040 0.480 0.100 0.480 0.100 0.480 0.070 

DA-VMFS 0.510 0.010 0.530 0.030 0.520 0.020 0.520 0.040 

CAMEP 0.560 0.001 0.560 0.006 0.560 0.001 0.550 0.006 

 

Table 4. Average cosine similarity result on NG20, NG17-19, reviews, sports, tr45 datasets 

 NG20 NG17-19 reviews sports tr45 

K 20 3 5 7 10 

SP-KMeans 0.1587 0.1531 0.2131 0.2450 0.3784 

DA-VMFS 0.1583 0.1534 0.2140 0.2492 0.3798 

CAMEP 0.1602 0.1535 0.2145 0.2476 0.3847 

 

Table 5. Average cosine similarity results on classic la1, la12, and la2 datasets 

 classic la1 la12 la2 

K 4 6 6 6 

SP-KMeans 0.1505 0.1738 0.1747 0.1803 

DA-VMFS 0.1523 0.1730 0.1755 0.1828 

CAMEP 0.1527 0.1758 0.1762 0.1868 

 

Table 4 and Table 5 show the average cosine similarity (ACS) of the clustering results of different 

clustering algorithms for different clustering algorithms. It can be seen from the table that the ACS values of 

CAMEP and DA-SPKM are greater than those of SP-Kmeans value. 

 

 

4.3.2. Comparison of clustering results of different algorithms for different clusters.The clustering algorithm 

often does not know the actual number of clusters in advance. Therefore, the authors compare the clustering 

performance of each algorithm in different clustering categories. In order to ensure the accuracy of the 

experiment, a clustering class running algorithm 20 times, and finally 20 times the average of NMI as the class 

of NMI value. Figure 1 and Figure 2 are the algorithm for some data sets in a variety of clusters under the 

NMI value comparison chart, we can see from the figure CAMEP due to the use of the maximum entropy 

strategy to avoid the local minimum point, so in different poly Class clustering performance is better than SP-

Kmeans. 

Table 6. Runtime results 

 NG20 NG17-19 reviews sports classic 

K 20 3    

SP-KMeans 84.5 6.4 12.2 25.8 5.1 

DA-VMFS 1686.7 50.5 220.1 335.0 96.5 

CAMEP 3177.9 55.2 326.3 449.2 125.5 
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4.3.3. Comparison of clustering time of each algorithm.Table 6 shows the clustering time comparison of the 

partial data sets in the actual clustering number.  The clustering time is much smaller than the other two 

algorithms, Based on the analysis of the above sections, the author thinks that different clustering algorithms 

can be used for different data clustering tasks.  

 

 
 

5. Conclusion 

In this paper, the maximum entropy principle is applied to the objective function of the spherical K-means 

algorithm, and the clustering algorithm based on maximum entropy principle is proposed. A large number of 

experiments show that the algorithm can effectively the clustering performance of text data set is better than 

that of traditional clustering algorithms. In addition, the author also found some problems: how to improve the 

clustering effect of CAMEP in the case of high difficulty data cluster, and how to further improve the CAMEP 

clustering effect reduce its clustering time. The above question is also the author's next research goal. 

6. References 

[1] Hashimi H, Hafez A, Mathkour H. Selection criteria for text mining approaches [M]. Elsevier Science 

Publishers B. V. 2015. 

[2] Jammalamadaka S R, Sengupta A. Directional statistics / [J]. 2017. 

[3] Dhillon I S, Fan J,Guan Yuqiang. Efficient clustering of very large document collections[C]//Data mining 

for Scientific and Engineering Applications Norwell. MA: Kluwer, 2011.  

[4] Yasuda M. Entropy Maximization and Deterministic Annealing Approach to Fuzzy C-means Clustering [J]. 

Scis, 2012, 2010:1515-1520. 

[5] Rose K, Gurewitiz E, Fox G A. Deterministic annealing approach to clustering [J]. Patter Recognition 

Letters, 1990, 11:589- 594. 

[6] Javed K, Gouriveau R, Zerhouni N. A New Multivariate Approach for Prognostics Based on Extreme 

Learning Machine and Fuzzy Clustering [J]. IEEE Transactions on Cybernetics, 2015, 45(12):2626-

2639. 

[7] Li R, Tao X, Tang L, et al. Using Maximum Entropy Model for Chinese Text Categorization[C]// Asia-

Pacific Web Conference. Springer Berlin Heidelberg, 2004:578-587. 

[8] Li Ronglu, Wang Jianhui, Chen Xiaoyun, et al. Using maximum entropy model for Chinese text 

categorization[J].Journal of Computer Research and Development, 2005,42( 1):94- 101. 

[9] Surian D, Chawla S. Mining Outlier Participants: Insights Using Directional Distributions in Latent 

Models[C]// Joint European Conference on Machine Learning and Knowledge Discovery in Databases. 

Springer Berlin Heidelberg, 2013:337-352. 

[10] Shi Zhong, Joydeep G J. A unified framework for model- based clustering [J]. Journal of Machine 

Learning Research, 2004, 4(6):1001- 1037. 

[11] Shi Zhong, Ghosh J. Generative model- based document clustering: a comparative study [J]. Knowledge 

and Information Systems, 2005, 8(3):374- 384. 

[12] ftp://www.cs.umn.edu/~karypis/CLUTO/flies/datasets.tar.gz. 

[13] Mow: a toolkit for statistical language modeling, text retrieval, classification and 

clustering[EB/OL].http://www.cs.cmu.edu/mccallum/bow. 

[14] Hornik K, Wu W W, Grün B, et al. movMF: An R Package for Fitting Mixtures of von Mises-Fisher 

Distributions [J]. Journal of Statistical Software, 2014, 058(10):1-31. 



8

1234567890

ISAI2017 IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 887 (2017) 012064  doi :10.1088/1742-6596/887/1/012064

 

[15] Karayiannis N B. MECA: maximum entropy clustering algorithm[C]// Fuzzy Systems, 1994. IEEE 

World Congress on Computational Intelligence. Proceedings of the Third IEEE Conference on. IEEE, 

2002:630-635 vol.1. 

[16] ZHAO Yang, born in 1992, M. S. candidate. His research interests include data mining, personalized 

recommendation, etc.  

[17] LIU Fangai, born in 1962, Ph. D., professor. His research interests include data mining, personalized 

recommendation, distributed computing, etc. 

[18] This research was financially supported by the National Natural Science Foundation of China 

(No.61572301, No.90612003), the Natural Science Foundation of Shandong Province 

(No.ZR2013FM008, No.ZR2016FP07), and the Open Research Fund from Shandong provincial Key 

Laboratory of Computer Network (No. SDKLCN-2016-01). 


