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Abstract. Based on the the geometric realization of entanglement entropy via Ryu-
Takayanagi formula, in this work we evaluate the relative entropy for the holographic deformed
CFT dual to the torsion gravity coupled to the fermions of nonzero vev in the Einstein-Cartan
formulation. We find that the positivity and monotonicity of the relative entropy imposes
constraint on the strength of axial-current coupling, fermion mass and equation of state. Our
work is the first example to demonstrate the nontrivial constraint on the bulk gravity theory
from the quantum information inequalities. Especially, this constraint is beyond the symmetry
action principle and should be understood as the unitarity constraint. This talk is based on the
work [1] of the authors.

1. Introduction
We evaluate the relative entropy on a ball region near the UV fixed point of a holographic
conformal field theory deformed by a fermionic operator of nonzero vacuum expectation value.
The positivity of the relative entropy considered here is implied by the expected monotonicity of
decrease of quantum entanglement under RG flow. The calculations are done in the perturbative
framework of Einstein-Cartan gravity in four-dimensional asymptotic anti-de Sitter space with
a postulated standard bilinear coupling between axial fermion current and torsion, i.e.,

LψK =
ηt
4!

√−g εμνρσ ψ̄γμγ5ψKνρσ (1)

where Kνρσ is the contorsion tensor. If ηt = 1, LψK is the canonical coupling of the fermion to
torsion as conventionally chosen in [2]. Holographically, this is dual to deforming the holographic
CFT by such a coupling term

δλ

∫
ddx OΔ(x) (2)

and with

〈
∫
ddx OΔ(x)〉 �= 0 (3)

where OΔ is some single-trace fermion operator of conformal dimension Δ, and δλ is a spinor
characterizes the amount of deformation.

By requiring positivity of relative entropy, our result yields a constraint on axial current-
torsion coupling, fermion mass and equation of state. In the following we sketch our results.
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2. Relative Entropy and Holographic Consideration
The relative entropy is a “distance” measure on the (quantum) state space. For two state ρ and
σ, the relative entropy is defined as

S(ρ||σ) := tr(ρ log ρ)− tr(ρ log σ) . (4)

As a “distance” measure, the relative entropy is non-negative, i.e.,

S(ρ||σ) ≥ 0 (5)

in which the equality holds if and only if ρ = σ.
For a quantum state one can express the reduced density matrix σA on the region A in terms

of the modular Hamiltonian HA as follows:

σA =
e−HA

tr e−HA
, (6)

then the relative entropy can be rewritten as

S(ρA||σA) = Δ〈HA〉 −ΔSA (7)

where

Δ〈HA〉 := − tr(ρA log σA) + tr(σA log σA) , (8)

ΔSA := − tr(ρA log ρA) + tr(σA log σA) . (9)

Note that the entanglement entropy for state σ on the region A is defined by

SA(σ) := − tr(σA log σA) (10)

so that ΔSA is the difference of entanglement entropy of the region A between states ρ and σ.
Via (7) the positivity of relative entropy yields

Δ〈HA〉 ≥ ΔSA . (11)

The modular Hamiltonian HA is in general nonlocal and unknown. However, for CFTd with
the interested region A to be a disk of radius RA, it has a closed form as follows [3]:

HA = 2π

∫
|x|<RA

dd−1x
R2
A − r2
2RA

Ttt(�x) (12)

where Ttt is the (holographic) energy density operator of CFT.
To extract some constraints from the relative entropy, we are interested in the case where σ

is the CFT vacuum state, and ρ is a perturbative state (by either excitation or deformation)
away from σ, i.e.,

ρ = σ + δρ , |δρ|/|ρ| << 1 . (13)

Since the relative entropy takes its extremum at ρ = σ, its first order variation vanishes, which
then yields the first law of entanglement thermodynamics [4], i.e.,

Δ〈HA〉|O(δρ) = ΔSA|O(δρ) . (14)

On the other hand, the positivity of the second order variation will impose some unitarity bound
on the deformed states of CFT.
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In the context of AdS/CFT correspondence, a dual state is characterized by an asymptotic
AdS bulk metric, i.e., in the Poincare coordinates,

ds2 =
�2

z2

(
G(z)dz2 +Hμν(z, x

μ)dxμdxν
)

(15)

where � is the AdS radius. The CFT vacuum state σ corresponds to G(z) = 1 and Hμν = ημν .
The perturbative state ρ will be given by some slightly deviated Hμν as well as G(z).

We can then obtain the modular Hamiltonian HA on the region A from holographic Tμν for
the corresponding state by the relation (12) if A is a ball. By evaluating HA for both ρ and
σ states and subtracting them, we can then obtain Δ〈HA〉. We still need to calculate ΔSA
holographically in order to obtain the relative entropy by (7). The entanglement entropy can
be obtained holographically by the Ryu-Takayanagi formula [5]:

SA =
Area(γA)

4GN
(16)

where γA is the co-dimensional two extremal surface ending on the entangling surface ∂A at the
AdS boundary z = 0. For static metric, γA is simply the minimal surface on a fixed time slice.
We can then evaluate the γA and thus SA for the bulk metrics corresponding to states ρ and σ,
and then subtract them to obtain ΔSA.

3. Summary of Our Results
In this work we consider the deformed holographic CFT with fermionic sources in AdS4 space in
the framework of Einstein-Cartan gravity with a postulated coupling constant for the bilinear
interaction between axial current and torsion. Note that this coupling cannot be fixed by the
dynamical symmetry of holographic CFT. Instead we find that the positivity of relative entropy
disfavors such a coupling.

By turning on both normalizable and non-normalizable fermionic zero modes, the bulk
geometry will be backreacted by the torsion at the second order of gravitational coupling. We
will solve the backreacted metric in the expansion of Newton constant, denoted by k, up to k2

order, i.e.,
g = g0 + k g1 + k2 g2 (17)

where g0 is the pure AdS4 metric. Note that g1 and g2 will encode the information about the
fermionic sources.

Moreover, a bulk fermion of mass m considered here is dual to a CFT operator of conformal
dimension Δ given by

Δ =
d

2
+ |m| . (18)

Unlike the case for the scalar field/operator, from (18) we see no analogue of BF bound on m
for preventing from instability.

In this paper, we will consider the backreaction due to the non-vanishing stress tensor of the
bulk fermionic zero modes. This is dual to the holographic deformed CFT given by (2) and (3).
Then, we will evaluate the relative entropy up to k2 (or δl2) order by using the backreacted
metric.

As we will see, the torsion will affect g2 but not g1. Thus, at the k order, everything should
go as the usual Einstein gravity so that the relative entropy evaluated holographically will satisfy
the first law (14), i.e.,

S(ρ||σ)|k = Δ〈HA〉|k −ΔSA|k = 0 , (19)

as expected.
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For the evaluation of the second order relative entropy, we first need to evaluate Δ〈HA〉|k2 by
plugging 〈Ttt〉|k2 into (12). However, the holographic evaluation of 〈Ttt〉|k2 via g2 yields zero.
Thus, we have Δ〈HA〉|k2 = 0. Combined this result with the one of (19), we obtain the relative
entropy (7) up to k2 order, that is

S(ρ||σ) = −ΔSA|k2 ≥ 0 . (20)

To evaluate ΔSA|k2 , we need to first evaluate the the minimal surface γA with respect to the

metric g0 + kg1 up to k2 order, and we denote it by γ
(1)
A . Then, we can obtain ΔSA|k2 by

ΔSA|k2 :=
Area(γ

(1)
A )|g

4GN
|k2 (21)

where Area(γ
(1)
A )|g means evaluating the area of surface γ

(1)
A with respect to the metric (17).

In this work we find that the constraint (20) yields a constraint on m:

m2�2 ≥ 2η2t
μ20

(22)

where ηt is the postulated coupling constant for the bilinear interaction between bulk axial
current and torsion, and μ0 characterizes the equation of state for the dual deformed fermion
state by

P =
μ0 − 2

2μ0
ε . (23)

Here P is the pressure and ε is the energy density of the deformed fermion state. Note that the

monotonicity condition ∂S(ρ||σ)
∂RA

≥ 0 yields the same condition (22).
We see that the positivity of the relative entropy imposes constraint on the bilinear coupling

ηt in (1) as well as the fermion mass m and equation of state μ0. If there were no such coupling,
i.e, ηt = 0, then the relative entropy is positive for all m, which is consistent with the fact
there is no BF-bound for fermion’s mass and seems more natural. Otherwise, the constraint is
on all three parameters in a nontrivial way. It is interesting to see how this constraint can be
understood as some energy condition in the bulk Einstein-Cartan gravity.
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