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Abstract.

Since John Bell has established his famous inequality and several independent experiments
have confirmed the distinct polarization correlation of entangled photons predicted by quantum
mechanics it is evident that quantum mechanics cannot be explained by local realistic theories.
Actually, the observed polarization correlation can be deduced from wave optical considerations.
The correlation has its origin in the phase coupling of the two circularly polarized wave packets
leaving the photon source simultaneously. The experimental results violate Bell’s inequality
although no non-local interactions have to be assumed. In consequence the principle of locality
remains valid in the scope of quantum mechanics. However, the principle of realism has to be
replaced by the less stringent principle of contextuality.

1. Introduction

In 1964 John Bell [1] presented an inequality allowing physicists to discriminate between
quantum mechanics and local realistic theories. Bell showed that spin correlations of entangled
particles derived from local realistic theories must be less pronounced than predicted by quantum
mechanics. When experiments especially those with entangled photons confirmed the quantum
mechanical results [2, 3, 4] local realistic theories were ruled out.

When A. Khrennikov [5] discusses the dilemma whether locality or objectivity should be
abandoned he comes to the conclusion that quantum mechanics is nonobjective in the sense
that the values of physical observables cannot be assigned to a quantum system before the
measurement process has taken place. In Khrennikov’s opinion objectivity has to be replaced
by contextuality.

B.-G. Englert concluded in his article on quantum theory [6] from considerations on statistical
operators that quantum mechanics does not require any non-local action in order to reproduce
the polarization correlations of entangled photons. Therefore it might be wise to query the
concept of realism or the closely related concept of objectivity. Neither Khrennikov nor Englert
propose a mechanism leading to the observed polarization correlations.

The best evidence for the violation of Bell’s inequality has been achieved by the measurements
of Aspect et al [2, 3] and Weihs et al [4]. In the experiments of Aspect and coworkers the linear
polarizations of the entangled photons are correlated. In contrast, in the experiment of Weihs
et al the linear polarizations are anti-correlated. In this article mainly the experiments of Weihs
et al will be discussed. The experiments of Aspect et al [2, 3] will be only shortly touched upon
at the end.
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With respect to the experiment of Weihs et al not only the experimentally approved
polarization correlations on singlet states will be deduced from wave optical considerations but
also polarization correlations of entangled photon pairs in triplet configuration. When future
experiments with down conversion sources will confirm the predicted results for triplet states it
will be a strong argument in favour of the wave optical considerations presented in this article.

2. Symmetries of photon source and detector systems

By means of an optically nonlinear BBO crystal Weihs et al [4] convert ultraviolet photons into
entangled pairs of green photons. The two electromagnetic wave packets associated with the
photons are simultaneously emitted in (nearly) the same direction. The senses of rotation of the
photons leaving such a parametric down conversion source are statistically distributed. Photon
pairs in triplet configuration are always rotating in the same sense and photon pairs in singlet
configuration are always rotating in opposite sense.

After the photons have passed a half wave plate in order to exchange the vertically polarized
ordinary and the horizontally polarized extra-ordinary beam the two wave packets traverse
separate compensating BBO plates which can be tilted with respect to a horizontal axis
perpendicular to the propagation direction of the photons. The compensating plates serve
three purposes. They cancel to a great extend the undesired phase shift between ordinary and
extra-ordinary beam summed up in the primary birefringent BBO plate.

By tilting the compensating plates the phase of ordinary and extra-ordinary beam can be
shifted with respect to each other. The relative phase of the two linearly polarized waves has to be
fine-tuned to be £ 7/2 thus forming circularly polarized waves. If the probability of finding single
photons with a given linear polarization does no longer depend on the polarization direction the
pulses are really circularly polarized. This fine-tuning has to be done in both photon channels.

By a larger change of the tilting angle the sense of rotation of the photons passing through
the compensating plate can be reverted. If the sense of rotation is reverted in one of the two
photon channels a triplet configuration is converted into a singlet configuration or vice versa.

When the coordinate systems of the two observers are suitably chosen the polarization
correlation of entangled photons exclusively depends on «— 8 where o and S are the polarization
angles looked for by Alice and Bob. If the circular polarizations of the two photons are opposite
to each other (singlet state) the coordinate systems of the two observers must have opposite
handedness. If the circular polarizations of the two photons are equal (triplet state) the
coordinate systems of the observers must have equal handedness. That means the symmetries of
source and detector systems have to match. In figures 1 and 2 appropriate coordinate systems
are shown for studying singlet and triplet states.

In the figures the observer Bob, the corresponding z-axis and the angle 8 are distinguished
by a superscript indicating that the coordinate systems of Bob are different when the photon
pairs are in singlet (S) or triplet (T) configuration. One has to bear in mind that the angles
S and BT are opposite to each other, i.e. 35 = —F7. In the past mainly entangled photon
pairs in singlet configuration have been studied with the coordinate system depicted in figure 1.
Therefore the angle 8 traditionally used in the literature is identical with 5.

The singlet case has been exhaustively investigated by Weihs et al [4] using the above
described down conversion source. Although the triplet configuration has only fragmentarily
studied by Gregor Weihs [7] with the same down conversion source it will be discussed at first
because the argumentation is simpler than in the singlet case which will be treated afterwards.

3. Polarization correlation of photon pairs in triplet configuration
Circularly polarized waves can be understood as the superposition of two equally large linearly
polarized waves. The phase shift of these two linearly polarized waves with orthogonal
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Figure 1. Coordinate systems of two observers with a down conversion source emitting photon
pairs in singlet configuration. The coordinate systems of Alice and Bob are right-handed and
left-handed, respectively. The angles « and §° indicate the orientation of the linear polarization
looked for by Alice and Bob . The thin lines between source and observers indicate optical fibres.

polarization directions must be 7/2. The absolute orientation of the linearly polarized waves is
not relevant as long as they remain orthogonal to each other.

The fragmentation of the circularly polarized wave into two equally sized linearly polarized
waves is a convenient method to separate photons into two commensurate disjunct groups.
Photons initially embedded in one of the two linearly polarized wave components will always
stay in this wave component. The two groups of photons do not intermix. This conservation
law even holds when the polarization character of the waves is temporarily changed by the use
of birefringent plates or electro-optical modulators. Thus photons detected by Alice or Bob
behind polarizing filters were already contained in the corresponding linearly polarized wave
components just at the source.

In the following it is assumed that the Wollaston prisma of Alice is orientated in direction a.
Thus one of Alice’s detectors looks for photons polarized in the directions o and « 4 180°. The
other one looks for photons polarized in the directions av — 90° and « + 90°.

One can assume that the light source contains two sets of linear oscillators. The oscillators
A, and A g9o send circularly polarized light towards Alice. The oscillators BI and BT 900
send circularly polarized light to Bob”. The subscripts indicate the orientation of the linear
oscillators.

In the experiments with the BBO down conversion source the linear polarizations are anti-
correlated. That means at the source the electric fields of the two clockwisely or anti-clockwisely
rotating wave packets are always orthogonal to each other or in other words the circularly
polarized wave packets are phase shifted by Ap = 4+m/2 or —7/2.

Four configurations of the simultaneously emitted wave packets have to be distinguished.
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Figure 2. Coordinate systems of two observers with a down conversion source emitting photon
pairs in triplet configuration. The coordinate systems of Alice and Bob are both right-handed.
The angles o and 7 indicate the orientation of the linear polarization looked for by Alice and
Bob”. The thin lines between source and observers indicate optical fibres.

The time dependences of the four linear oscillators are given in table 1 on the premise that the
time dependence of oscillator A, is arbitrarily chosen to be 4 coswt. All four cases lead to the
same polarization correlation because the transmission probability of the analyzers is periodic
with a period of 180°. Thus the signs of the time dependences are not relevant.

Linearly polarized wave packets simultaneously emitted from the oscillators A, and Bg 900
are equal or opposite in phase and thus induce a maximum coincidence rate. The same is
true for the wave packets simultaneously emitted by the oscillators A, 5o and BT. The
coincidence rates in the two channels with matching (or opposite) phases must be equal because
of symmetry reasons. Each channel provides half of the total coincidence rate Iy obtained when
both polarizing filters are removed. The channel A, and Bl and the channel A 4900 and
BT 4900 do not provide coincidences because the two simultaneously emitted wave packets have
a phase shift of 7/2 at the source and thus are orthogonal to each other.

As has been explained above the orientation of the linearly polarized waves can be arbitrarily
chosen. Therefore the coincidence rates found in the four possible coincidence channels are for
each angle «

I(a, 7= a) =

(o, BT=a+90°) = I/2

I 490°8T=a+90°) =0
I(a+90°%8T=a) =1y/2.

(1)

For BT = a 4 90° the photon pairs are fully correlated. Assuming both detectors have
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perfect efficiency the correlation holds for each individual pair of entangled photons. If one of
the photons is detected at Alice by the detector looking for photons polarized in the direction
a the entangled photon will be detected at Bob” by the detector looking for the polarization
direction parallel to 37= a + 90°.

The analyzer on Alice’s side oriented along « lets pass 100% of the linearly polarized wave
emitted by oscillator A,. If the analyzer at Bob” is oriented along 87 # o + 90° it lets pass
only a fraction

cos?(a — BT + 90°) = sin®(a — g7) (2)
of the wave packets send out by the linear oscillator B/, oj.. Bob’s detector also lets pass linearly
polarized light emitted by oscillator B,,. But this light does not provide additonal coincidences
because the oscillations of A, and B, are orthogonal to each other. Therefore the coincidence
rate is

I(e, BT) = Iysin®(a— g7T)/2. (3)
The complementary coincidence rate is consequently
I(a, BT+ 90°) = Iy sin®(a — BTF 90°)/2 = Ip cos*(a — B 7T) /2. (4)

The two coincidence rates I(a, 37) and I(a, 87+ 90°) add up to Io/2.

The considerations are symmetric with respect to the role of Alice and Bob”. If the two sets
of oscillators are oriented along 7 and 374 90° the same polarization correlation is obtained.

The polarization correlation can be derived more formally by determining the overlap integral
of the two linearly polarized waves looked for by Alice and Bob” just at the source.

The time dependences of the linear oscillators A4, A g9 and B g are given in table 2 again
on the premise that the time dependence of oscillator A, is chosen to be +coswt. The time
dependences of BBT in the four rows can be summarized in the form

+ sin(wt & (a — g7)). (5)

The overlap integral of the two normalized functions v/2 coswt and £+v/2 sin(wt = (a — 7))
is

w 27w -
— 2coswtsin (wt+ (a— 7)) dt =
2 0
w 27 Jw
+ (— / 2coswtsinwtdt cos (o — 1) (6)
2w 0
2w fw
+ 23 2coswt coswtdt sin(a — 1)) = + sin(a—47).
T Jo

o s and Bl g0
simultaneously emitting two circularly polarized waves in (nearly) the same direction towards
Alice and Bob”. The two circularly polarized photons form a triplet pair. At the source
the polarization directions of the two waves are always perpendicular to each other. The two
circularly polarized wave packets are twisted by Ay = +90° or — 90° with respect to each other.

Table 1. Time dependences of the linear oscillators A,, A, ggo, BT

Rotation | Agp A, A 4900 BTY BT, o990
A | clockwise | +90° | +coswt | +sinwt | +sinwt | —coswt
B | countercl. | +90° | +coswt | —sinwt | —sinwt | —coswt
C | clockwise | —90° | +coswt | +sinwt | —sinwt | +coswt
D | countercl. | —90° | +coswt | —sinwt | +sinwt | + coswt
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The coincidence rate is proportional to the square of the overlap amplitude of the two wave
packets looked for by Alice and Bob” just at the source. Thus the coincidence rate is

I(a, 87) = Ipsin®(a — B7) /2. (7)

in agreement with equation (3).

The predicted results should be carefully tested in future experiments. This means among
others that quarter wave plates in front and at the rear of the electro-optical modulators
should be introduced. By means of a Poincaré sphere Gregor Weihs describes at large in
his doctor thesis [7] that an electro-optical modulator only twists a linear polarization into
another linear polarization when the modulator is sandwiched between two quarter wave plates
with appropriate orientations of the optical axes. In the experiment of Weihs et al [4] these
quarter wave plates have been omitted. Only for the angles 0°,90°,180° and 270° Alice and
Bob really look for linearly polarized light. For the pretended angles 45°, 135°, 225° and 315°
the observers look for circularly polarized waves. For all other angles Alice and Bob look for
elliptically polarized light.

In the triplet configuration the entangled photons are anti-correlated with respect to the linear
polarization and correlated with respect to the circular polarization. Therefore the omission of
the quarter wave plates would lead to fallacious angular dependences of the coincidence rate.

4. Polarization correlation of photon pairs in singlet configuration

The argumentation to derive the polarization correlation in the singlet case is less obvious than
in the triplet case because the electric fields of the associated wave packets rotate in opposite
directions. In fact, it is not so difficult to define a constant phase as could have been assumed
at first sight. In the experiment of Weihs et al [4] this counter-rotation has been achieved by
switching the tilting angle of the compensating plate on Bob’s side and thus reverting the sense
of rotation of the photons propagating towards Bob. A constant phase difference of the two
counter-rotating waves can be defined when the sense of rotation of the photons on Bob’s side
is once more reverted by going over from the right-handed coordinate system of Bob” (Fig. 1)
to the left-handed coordinate system of Bob* (Fig. 2).

The two reversions cancel each other when the associated mirror planes coincide. In the
experiment of Weihs et al [4] this condition is fulfilled because both mirror planes are oriented
along 5 = 0°.

Consequently the argumentation used in the previous section can be applied analogously.
Thus the coincidence rate is

I(a, B%) = Iy sin®(a — %) /2 (8)

Table 2. Time dependences of the linear oscillators A, A, g9. emitting circularly polarized
waves towards Alice. The oscillators BﬂT and BBT oo send circularly polarized waves towards
Bob. The time dependence of the oscillator B g is given in the last column. The four rows for
clockwise and anticlockwise rotation and the phase shift Ay = +90° or —90° are listed in the
same order as in table I

Rotation | Agp A, A 4900 Bﬂ
A | clockwise | +90° | +coswt | +sinwt | +sin(wt + (a — B71))
B | countercl. | +90° | +coswt | —sinwt | —sin(wt — (o — B71))
C | clockwise | —90° | +coswt | +sinwt | —sin(wt + (o — B71))
D | countercl. | —90° | +coswt | —sinwt | +sin(wt — (a — BT))
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as has been confirmed by Weihs et al [4].

As has already been mentioned in the previous section, the quarter wave plates before and
behind the electro-optical modulators have been omitted in the experiment of Weihs et al [4].
This experimental laxness has no consequences for the coincidence rates because in the singlet
configuration the entangled photons are not only anti-correlated with respect to the linear
polarization but also with respect to the circular polarization. In fact, for the sake of clarity the
missing quarter wave plates should be introduced in future experiments in order to really prove
the intended polarization correlations.

5. Polarization correlation of entangled photons emitted by doubly excited atoms
Aspect, Grangier and Roger could show in 1981 that polarization correlations of entangled
photons significantly violate Bell’s inequality. They studied circularly polarized photon pairs
emitted by doubly excited calcium-40 atoms in a (4p? 1Sgo) — (4s4p 'P1) — (4s% Sq) decay
cascade. The short living intermediate 'P; state has a life time of 5ns. Only entangled photon
pairs leaving the atom in opposite directions have been detected by the two observers. The two
photons form a singlet state because the two wave packets are rotating in opposite directions
with respect to their propagation directions.

A constant phase shift can be defined when the rotational frequencies of the two wave packets
are equal. The two photons (A1 = 551.3 nm, Ay = 422.7 nm) emitted in a decay cascade of
calcium-40 have different energies. That means carrier and rotational frequencies cannot be equal
for both photons. This particular feature should be systematically tested in future experiments.

The wave packets emitted by doubly excited atoms are in phase (A ¢ = 0°) or opposite in
phase (A ¢ = 180°). That means the electric fields of the two wave packets are always parallel
or antiparallel to each other at the source. In the wave optical model presented above the
oscillators A, and B, are in phase. The same is true for the oscillators A 499 and By 4ggo.
In consequence the coincidence rate is maximal when the two detectors are parallel and zero if
the two detectors are orthogonal to each other. Thus the polarization correlation is given by

I(or, B°) = Iy cos®(a— 57) /2 (9)

The photons are correlated with respect to their linear polarization, but anti-correlated with
respect to their circular polarization.

6. Concluding remarks

The derivation of the polarization correlation is based on the fact that circularly polarized wave
packets associated with entangled photon pairs are phase shifted at the source. For such waves
the information about the phase relation of the two associated wave packets at the source can be
deduced from the difference angle of the polarization directions looked for by the two observers.

Elementary processes providing circularly polarized entangled photon pairs are generally
characterized by a typical phase difference of the two simultaneously emitted wave packets. If
the phase difference at the source is 0° (or 180°) the linear polarizations are correlated [2, 3]. If
the phase difference is 90° the linear polarizations are anti-correlated [4, 7].

When the polarization character of the wave packets is not changed the distances between
source and observers have no influence on the experimentally found polarization correlations.
Usually in optical fibers the polarization state is changed by spurious birefringent effects.
Therefore Weihs et al [4, 7] have to recover the original polarization state by manually
compensating the undesired phase shifts in both photon channels.

Initiated by the violation of Bell’s inequality physicists investigating polarization correlations
of entangled photons mostly assume that their must be a superluminal information transfer
between the two observers. Salart et al [8] try to find a lower limit for the speed of spooky
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action at a distance. Shalm et al [9, 10] even claim to have proven that spooky action at a
distance is really real.

Following the wave optical considerations presented above the polarization correlations can
be explained without assuming non-local interactions. Therefore it is no longer necessary to
perform further experiments with enlarged distances [8] or with ultra-high efficiency detectors
[9, 10] in order to close possible loopholes.

The contradictory statements on the occurence of non-local interactions rest on different
assumptions. Bell’s inequality is derived from a purely particle based consideration. On the
simplest guess it is purely accidental at which output of a Wollaston prism a circularly polarized
photon is detected. Thus the coincidence rate is /4 for all angles o and .

Particle based considerations generally lead to wrong conclusions when quantum mechanical
results depend on phase differences. For example the intensity ratio of the photons detected at
the two outputs of a Mach-Zehnder interferometer can only be derived from the relative phase of
the two partial waves reaching the second semi-permeable mirror. In the case of interferometers
obviously only wave based considerations lead to proper results.

The wave optical explanation given above is purely wave based. The information contained
in phase differences of distinct wave components is maintained. The polarization correlation
determined by Alice and Bob is equal to the polarization correlation just at the source because
the two photon groups contained in the two linearly polarized wave components do not intermix.
Thus the principle of locality remains valid.

It is fully accidental through which output of a Wollaston prism the first photon leaves. For
the second photon, however, the probability is well defined. There is no further evidence for
any accidental behaviour. For o = 8 the strict correlation even holds for each pair of entangled
photons. Thereby it is not relevant which of the two photons is detected first.

On the other hand the principle of realism has to be reconsidered. The linear polarization
component of a circularly polarized photon is not defined before the measurement has taken
place. Nonetheless the polarization correlation of entangled photons measured at distant
locations is well defined and agrees with the predictions of quantum mechanics. Obviously
the principle of realism has to be replaced by the principle of contextuality. That means the
polarization correlation is only well defined when the polarization directions looked for by the
two observers are both fixed. But this assertion is trivial. If coincidence rates do not depend on
« as well as on S it would make no sense to measure coincidences at all.
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