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Abstract. We study flavor mixing transformations for a uniformly accelerated observer
(Rindler observer) in the simplest case of two charged scalar fields with different masses. This
is obtained starting from an analysis of boson field mixing in inertial frame (Minkowski frame)
in the hyperbolic basis. As a consequence of the non-trivial interplay between the Bogolubov
transformation related to flavor mixing and the one arising from the Rindler spacetime structure,
the Fulling-Rindler condensate of the inertial vacuum gets deeply modified, losing its original
thermal nature.

1. Introduction

Since Pontecorvo’s pioneering work [1], the issue of flavor mixing has turned out to be one of the
hottest topics in particle-physics phenomenology. Despite the great progress coming from the
theoretical and experimental developments of the two last decades, anyway, it remains one of the
most puzzling phenomena. Many features, in fact, are still intriguing, among which, for instance,
its origin within Standard Model, the related problem of the generation of neutrino masses and
the non-trivial condensate structure exhibited by the vacuum for the mixed fields. The latter
aspect, in particular, has been extensively explored, starting from the initial observation of the
unitary inequivalence between mass and flavor vacua in QFT [2, 3]. In particular, oscillation
formulas have been derived, exhibiting corrections with respect to the usual ones [4] and the
entanglement properties of mixed particles have been recently investigated [5].

An equally important question dealing with flavor mixing and oscillations is the way in
witch they are affected by a gravitational field [6, 7, 8, 9]. In this paper, we do a first step
in this direction, by analyzing the QFT of two mixed scalar fields from the viewpoint of the
Rindler observer, i.e. a uniformly accelerated observer in the Minkowski spacetime. It is worth
stressing that till now the QFT of mixed fields has been studied only in inertial frame and in the
plane-wave basis. Here we focus on the hyperbolic representation, where the boost generator is
diagonal, which is a convenient starting framework for the analysis in the accelerated frame. The
formalism we elaborate may serve as basis for studying flavor oscillations in curved background:
once extended to neutrino fields, indeed, it can be compared with the other approaches existing
in literature, such as the WKB approximation [6], the plane-wave method [7] or geometric
treatments [8].
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Analyzing field mixing in an accelerated frame, anyway, is not just a tool for studying the
influence of gravitation on flavor oscillation formulas. There are, in fact, a number of theoretical
problems appearing in such a context. For instance, it has been recently highlighted that the
inverse β-decay rates of accelerated protons in the inertial and comoving frames disagree when
neutrino mixing is taken into account [10]. A more detailed analysis of this and other aspects
will be discussed elsewhere [11].

The paper is organized as follows: in Section 2 the standard QFT of two mixed scalar fields
in the plane-wave expansion is briefly reviewed. Section 3 is devoted to the comparison of
such a framework with the alternative hyperbolic basis; in particular, the physical equivalence
between the two representations is shown. In Section 4, after a short discussion about the
Rindler spacetime structure, the Rindler-Fulling quantization scheme is analyzed, both for free
and mixed fields. Conclusions are summarized in the last Section.

2. Field mixing for an inertial observer: plane-wave representation

Let us start by discussing some of the major results about flavor mixing in the simplest case
of two complex scalar fields. We review, in particular, the quantization of mixed fields for an
inertial observer in the usual plane-wave basis. Such a topic has been widely analyzed in the
last two decades, first in the case of Dirac fermions [2, 12] and later for other fields [3].

As it is well known, mixing transformations in a simplified two flavor model are defined
according to the following equations

φA(x) = φ1(x) cos θ + φ2(x) sin θ, (1)

φB(x) = −φ1(x) sin θ + φ2(x) cos θ, (2)

where φj(x), j = 1, 2 are two free charged scalar fields of masses mj, φχ(x), χ = A,B are the
mixed fields of “flavor” χ and θ is the mixing angle. In terms of the complete sets of plane-waves{
Uk,j , U

∗
k,j

}
, the expansion of φj(x) reads

1:

φj(x) =

∫
d3k

{
ak,j Uk,j(x) + ā

†
k,j U

∗
k,j(x)

}
, j = 1, 2, (3)

where

Uk,j(x) =
[
2ωk,j(2π)

3
]− 1

2
ei(k·x−ωk,jt) (4)

are solutions of the Klein-Gordon equation in the Minkowski coordinates (t, x1, ~x) for the field
of mass mj. It is not difficult to show that these mode functions are orthonormal with respect
to the KG product

(φα, φβ) = i

∫
d3x

[
φ∗
β(x)

↔

∂t φα(x)
]
, (5)

where the integration is performed on a hypersurface of constant t.

The ladder operators a
†
k,j and ak,j (ā†

k,j and āk,j) in Eq.(3) create and annihilate a particle

(antiparticle) of momentum k and frequency ωk,j =
√
m2

j + k2, respectively. They are assumed

to satisfy the canonical commutation relations. In addition, since we are dealing with two free
fields, the vacuum state they annihilate is accordingly defined as |0M 〉 ≡ |0M 〉1 ⊗ |0M 〉2, where
|0M 〉j is the vacuum for the field of mass mj. We will refer to such a state as the “Minkowski
inertial vacuum”.

1 The metric ηµν = diag(+1,−1,−1,−1) and natural units will be used throughout all the paper. Moreover, the
following shorthand notation will be adopted for 4-, 3- and 2-vectors: x ≡ (t, x1, x2, x3), x ≡ {x1, x2, x3} and
~x ≡ {x2, x3} .
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The completeness of plane-waves Eq.(4) allows us to adopt the following free fields-like
expansions for the “flavor fields”

φℓ(x) =

∫
d3k

{
ak,ℓ(t)Uk,s(x) + ā

†
k,ℓ(t)U

∗
k,s(x)

}
, (6)

where (ℓ, s) = (A, 1), (B, 2). The time dependent flavor operators ak,ℓ are given by2

ak,ℓ = (φℓ, Uk,s) . (7)

By using Eq.(1), for instance, we obtain for ak,A the following transformation

ak,A = cos θ ak,1 + sin θ
(
ρk ∗
12 ak,2 + λk

12 ā
†
−k,2

)
, (8)

where the Bogolubov coefficients ρk12 and λk

12 are such that

ρk12 ≡
∫

d3k′
(
Uk,1, Uk′,2

)
= |ρk12| ei(ωk,2−ωk,1)t, λk

12 ≡
∫

d3k′
(
U∗
k′,2, Uk,1

)
= |λk

12| ei(ωk,1+ωk,2)t,

(9)
with

|ρk12| ≡
1

2

(√
ωk,1

ωk,2
+

√
ωk,2

ωk,1

)
, |λk

12| ≡
1

2

(√
ωk,1

ωk,2
−

√
ωk,2

ωk,1

)
(10)

(a similar expression can be derived for ak,B). Starting from Eqs.(8) and (9), one can easily prove
that flavor operators, just as the corresponding mass operators, obey the canonical commutation
relations (at equal times).

The flavor vacuum |0(θ, t)〉A,B at time t can be now defined as

ak,χ(t) |0(θ, t)〉A,B = āk,χ(t) |0(θ, t)〉A,B = 0 , χ = A,B . (11)

By inverting the set of equations for the flavor operators with respect to the mass ones, it is
possible to show that the vacuum Eq.(11) exhibits a condensate structure of particle-antiparticle
pairs, both with the same and different masses. The condensation density for any t is given by

A,B〈0(θ, t)|a†k′,j ak,j|0(θ, t)〉A,B = sin2 θ |λk

12|
2
δ3(k− k′), j = 1, 2 . (12)

It is worth noting that, in the infinite volume limit, flavor and mass vacua are orthogonal to
each other due to the infinite number of degrees of freedom. This shows the fundamental result
that the Hilbert space for the mixed field states is unitarily inequivalent to the Hilbert state
space where the free-field operators are defined (see Ref.[2, 3] for the details).

3. Field mixing for an inertial observer: hyperbolic representation

The foregoing discussion is completely within the usual plane-wave basis. According to Lorentz
covariance, anyway, there is no reason to prefer such a representation to those which diagonalize
the other generators of the Lorentz group. We may wonder, for instance, how the above
formalism appears if we quantize the fields in the hyperbolic representation, that is, the
representation in which the Lorentz boost generator is diagonal3. The introduction of the latter
quantization scheme, however, is not a purely mathematical exercise of change of basis. As we

2 For simplicity, from now on we will omit the time dependence of flavor operators and vacuum when it is not
strictly necessary.
3 We will consider, in particular, the generator of a Lorentz boost along the x1-axis.
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shall see in the next Section, indeed, the hyperbolic expansion turns out to be an useful tool for
analyzing the field quantization from the viewpoint of an accelerated observer [13].

In order to answer our question, let us expand the free fields φj(x), j = 1, 2 in terms of the

complete and orthonormal sets of boost modes
{
Ũ

(σ)
κ,j , Ũ

(σ)∗
κ,j

}
, related to the plane-waves by4

Ũ
(σ)
κ,j (x) ≡

∫ +∞

−∞

dk1 p
(σ)∗
Ω,j (k1)Uk,j(x) =

eσπΩ/2

2
√
2π2

KiσΩ(µ~k,jξ) e
i(~k·~x−σΩη), (13)

where the hyperbolic coordinates (η, ξ) are defined according to the following equations

t = ξ sinh η , x1 = ξ cosh η. (14)

The subscript κ in Eq.(13) stands for (Ω, ~k), KiσΩ is the modified Bessel function of second kind

and imaginary order and µ~k,j =
√

m2
j + |~k|2. The convolution function p

(σ)
Ω,j(k1) is given by

p
(σ)
Ω,j(k1) =

1√
2πωk,j

(
ωk,j + k1

ωk,j − k1

)iσΩ/2

, j = 1, 2. (15)

It is easy to show that the sets of these functions are both complete and orthonormal (see Ref.[14]
for the details).
Strictly speaking, Eq.(13) holds only in the region x1 > |t| ∪ x1 < −|t|. The correct global
functions, namely the Gerlach’s Minkowski Bessel modes, can be obtained by analytically
continuing the solutions Eq.(13) across x1 = ±t [15]. For our purpose, nevertheless, it is enough
to consider the modes as above defined.

The free fields φj(x), j = 1, 2 can be thus expanded as follows

φj(x) =
∑

σ

∫ +∞

0
dΩ

∫
d2~k

{
d
(σ)
κ,j Ũ

(σ)
κ,j (x) + d̄

(σ)†
κ,j Ũ

(σ)∗
κ,j (x)

}
, (16)

where the role of the integration on k1 in the plane-wave expansion Eq.(3) has been now replaced
by the sum on σ and the positive integration on Ω. It naturally arises the question how the
“hyperbolic” ladder operators in Eq.(16) are related to the corresponding ones in the plane-wave
representation Eq.(3). In this regard, by equating the two alternative field expansions Eqs.(3)
and (16) on a hyperplane of constant η and forming the KG inner product of both the sides

with the boost mode Ũ
(σ)
κ,j , one immediately obtains

d
(σ)
κ,j =

∫
d3k′

{
ak′,j

(
Uk′,j, Ũ

(σ)
κ,j

)
+ ā

†
k′,j

(
U∗
k′,j, Ũ

(σ)
κ,j

)}
, j = 1, 2. (17)

Since the boost modes Ũ
(σ)
κ,j are linear combinations of positive frequency plane-waves alone (see

Eq.(13)), the coefficient of ā†
k′,j in Eq.(17) vanishes. Therefore, by exploiting the orthonormality

condition of
{
Uk,j , U

∗
k,j

}
, j = 1, 2, it follows that (similarly for d̄

(σ)
κ,j )

d
(σ)
κ,j =

∫ +∞

−∞

dk1 p
(σ)
Ω,j (k1) ak,j. (18)

4 The physical meaning of σ = ±1 and of the positive parameter Ω in Eq.(13) will be clear once the Rindler-Fulling
quantization scheme for an accelerated observer is introduced.



5

1234567890

8th International Workshop DICE2016: Spacetime - Matter - Quantum Mechanics IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 880 (2017) 012043  doi :10.1088/1742-6596/880/1/012043

In Ref.[14] such operators are explicitly shown to diagonalize the x1-boost generator.
From Eq.(18) we find out that the vacuum annihilated by d-operators is the same as the
usual Minkowski vacuum |0M 〉. Additionally, by using the orthonormality and completeness

conditions of the sets
{
p
(σ)
Ω,j

}
and the commutation relations of ak,j and a

†
k,j , j = 1, 2, it is

possible to show that the transformation Eq.(18) is canonical. Combining both these results,
we can definitely state that the quantum formalisms above introduced, the plane-wave and the
hyperbolic constructions, are totally equivalent from the point of view of free fields.

To understand if such an equivalence still holds when mixing is involved, let us extend the
hyperbolic quantization to the flavor fields Eqs.(1) and (2). Retracing the same steps of the
plane-wave representation, we expand the above fields as follows

φℓ(x) =
∑

σ

∫ +∞

0
dΩ

∫
d2~k

{
d
(σ)
κ,ℓ Ũ (σ)

κ,s (x) + d̄
(σ)†
κ,ℓ Ũ (σ)∗

κ,s (x)
}
, (19)

where (ℓ, s) = (A, 1), (B, 2) and d
(σ)
κ,ℓ are the flavor operators in the hyperbolic basis.

In order to establish whether the quantization formalism of mixed fields is somehow affected
by such a change of basis, let us focus on flavor vacuum in this new representation. For this
purpose, following the approach used in Ref.[13], we could express flavor d-operators in Eq.(19)
in terms of the corresponding mass operators in Eq.(16). Exploiting Eq.(18), the relations thus
obtained could be recast in terms of mass a-operators and, in the last step, of flavor a-operators
by using the inverse of Eq.(8). Such a procedure, however, would be rather laborious. Here we
propose a more straightforward approach, yielding the same result.

By directly comparing Eqs.(6) and (19) for the flavor fields and performing the same
calculations as in absence of mixing, we readily obtain

d
(σ)
κ,ℓ =

∫ +∞

−∞

dk1 p
(σ)
Ω,s(k1) ak,ℓ, (20)

where (ℓ, s) = (A, 1), (B, 2). Therefore, the relation Eq.(18) between d- and a- mass operators
also holds for the corresponding flavor operators5.
Eq.(20) shows a significant result: since flavor d-annihilators are linear combinations of flavor
a-annihilators alone, the change of representation from plane-wave to hyperbolic modes does not
affect the flavor vacuum |0(θ, t)〉A,B in Eq.(11) and, consequently, the Hilbert space structure
for the mixed fields.

4. Field mixing for a uniformly accelerated observer: Fulling-Rindler quantization

In this Section we show how the hyperbolic quantization previously introduced turns out to be
an helpful construction in the extension of QFT to an accelerated frame of reference.
As it is well known, the most suitable framework to describe the motion of an accelerated
observer in the Minkowski spacetime is the Rindler metric6. The analysis of flavor mixing
from the viewpoint of such an observer, therefore, requires a preliminary discussion about the
properties of this background. In doing so, we also briefly review the Rindler-Fulling scheme
[16], which is the natural way for quantizing the fields in an accelerated frame.

As a first step, let us recall that the line element ds2 = ηµνdx
µdxν in the hyperbolic

coordinates Eq.(14) takes the form

ds2 = (dt)2 − (dx1)
2 −

3∑

j=2

(dxj)
2 −→
hyperb. coord.

ds2 = ξ2dη2 − dξ2 −
3∑

j=2

(dxj)
2
. (21)

5 This implies that the flavor operators d
(σ)
κ,χ , χ = A,B, just as the corresponding operators in the plane-wave

basis, obey the canonical commutation relations (at equal times).
6 As usual, we will refer to such an observer as the “Rindler observer”.
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The world line of a uniformly accelerated observer with proper acceleration a is thus given by

ξ(τ) = const ≡ a−1 , ~x(τ) = const , (22)

where τ is the proper time measured along the line. From Eq.(21), we have η(τ) = aτ , that is,
the proper time τ measured by an observer with proper acceleration a is the same as the Rindler
time η, up to the scale factor a.

By using the Minkowski coordinates, one can easily verify that the line Eq.(22) describes an
hyperbola in the (t, x1) plane with asymptotes t = ±x1. Such a trajectory is parametrized
by the proper acceleration a: for a > 0, the observer is confined within the right wedge
R+ = {x|x1 > |t|}, for a < 0, instead, his motion occurs in the left wedge R− = {x|x1 < −|t|}.
The two regions R+ and R−, moreover, are causally separated from each other; there is no way
for an accelerated observer in R+ to exchange information with one in R− [17].

Keeping these properties in mind, the Rindler-Fulling procedure is now introduced as opposed
to the more familiar Minkowski quantization. To this purpose, following the approach used in
Ref.[14], we expand the free fields as follows

φj(x) =
∑

σ

∫ +∞

0
dΩ

∫
d2~k

{
b
(σ)
κ,j u

(σ)
κ,j (x) + b̄

(σ)†
κ,j u

(σ)∗
κ,j (x)

}
, j = 1, 2. (23)

The Rindler modes u
(σ)
κ,j of positive frequency Ω with respect to the time η are defined by

u
(σ)
κ,j (x) = θ(σξ)

[
2Ω(2π)2

]− 1
2 h

(σ)
κ,j (ξ) e

i(~k·~x−σΩη) , (24)

where σ = ±1 refers to the right/left wedges R±. They are solutions of the KG equation in
Rindler coordinates for the field of mass mj (see Ref.[14] for the mathematical details). As in

Eq.(13), the function h
(σ)
κ,j is given by the modified Bessel mode of second kind and imaginary

order, up to a normalization factor. According to our previous considerations, the Heaviside step
function θ(σξ) has been inserted in Eq.(24) in order to restrict such modes to only one of the
two causally separated wedges (R+ for σ = +1 and R− for σ = −1). In addition, by expressing
the KG inner product Eq.(5) in the Rindler coordinates and using Eq.(24), it is possible to show
that the modes above defined form a complete orthonormal set.

As it is known, the ladder operators b
(σ)†
κ,j and b

(σ)
κ,j (b̄

(σ)†
κ,j and b̄

(σ)
κ,j ) in Eq.(23) can be interpreted

as creators and annihilators of a Rindler particle (antiparticle), respectively. They are assumed
to satisfy the canonical commutation relations. The Rindler vacuum is accordingly defined as
|0R〉 ≡ |0R〉1 ⊗ |0R〉2, where |0R〉j is the vacuum for the field of mass mj .

We are now interested in the relation between the free-field quantization in the inertial frame
and the Rindler-Fulling scheme. To this end, let us remind that, as shown in the previous
Section, the plane-wave and the hyperbolic constructions are completely equivalent from the
viewpoint of an inertial observer. Therefore, in our comparison, we can equivalently consider
the field expansions Eqs.(3) or (16) for such an observer. To simplify the calculations, we choose
the latter. In such a way, by matching Eqs.(16) and (23) on a hypersurface of constant η and

multiplying both the sides for the Rindler mode u
(σ)
κ,j , j = 1, 2 it follows that

b
(σ)
κ,j =

√
1 +NR(Ω) d

(σ)
κ,j +

√
NR(Ω) d̄

(−σ)†
κ̃,j , j = 1, 2, (25)

where κ̃ stands for (Ω,−~k) and
NR(Ω) =

1

e2πΩ − 1
(26)
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is the Bose-Einstein condensate of the Minkowski vacuum |0M 〉7

〈0M |b (σ)†κ,j b
(σ)
κ′,j|0M 〉 = NR(Ω) δ

3(κ− κ′), j = 1, 2. (27)

From Eq.(27) we find out that the inertial vacuum appears to be not empty from the viewpoint
of an accelerated observer; just as the flavor vacuum with respect to free fields, indeed, it exhibits
a condensate structure in terms of the Rindler particles. The crucial point is that such a non-
trivial result, both for mixing and Rindler condensation densities, mathematically arises from
a Bogolubov transformation involving two sets of creators and annihilators: mass and flavor
ladder operators in the former case (see Eq.(8)), Minkowski and Rindler ones for the latter
effect (Eq.(25)).

Up to now we have separately analyzed the physics hiding under such Bogolubov
transformations. It arises thus the natural question how the thermal condensate in Eq.(26)
gets modified if we extend the Rindler-Fulling scheme to the mixed fields Eqs.(1) and (2).
For this purpose, all we need is to recast the mixing transformation Eq.(8) in terms of the Rindler
b-operators. Once again, by exploiting the completeness of the Rindler modes in Eq.(24), we
take for the flavor fields the following expansion

φℓ(x) =
∑

σ

∫ +∞

0
dΩ

∫
d2~k

(
b
(σ)
κ,ℓ u (σ)

κ,s (x) + b̄
(σ)†
κ,ℓ u (σ)∗

κ,s (x)
)
, (28)

where (ℓ, s) = (A, 1), (B, 2) and b
(σ)
κ,ℓ are the flavor operators for the Rindler observer.

The interplay between the mixing and thermal Bogolubov transformations can be now easily
investigated by comparing Eqs.(19) and (28). By multiplying both the sides for the Rindler

mode u
(σ)
κ,j , j = 1, 2, one can show that the relation Eq.(25) between b- and d- mass operators

also holds for the corresponding flavor operators [13]

b (σ)κ,χ =
√

1 +NR(Ω) d
(σ)
κ,χ +

√
NR(Ω) d̄

(−σ)†
κ̃,χ , χ = A,B. (29)

However, since our final aim is to calculate the Rindler distribution of mixed particles in the
vacuum |0M 〉, it is useful to recast Eq.(29) in terms of the ladder operators ak,j and āk,j in
Eq.(3). The spectrum of mixed Rindler particles in the inertial vacuum takes thereby the form

〈0M | b (σ)†κ,χ b
(σ)
κ′,χ |0M 〉 =

NR(Ω) δ(κ − κ′) + sin2 θ

[(√
NR(Ω)NR(Ω′) +

√
(1 +NR(Ω)) (1 +NR(Ω′))

)
Nλλ

+
√

1 +NR(Ω)
√

NR(Ω′)Nρλ +
√

NR(Ω)
√

1 +NR(Ω′)N ∗
ρλ

]
δ2(~k − ~k′) (30)

where χ = A,B and

Nλλ =

∫ +∞

−∞

dk1 p
(σ)∗
Ω′,j (k1) p

(σ)
Ω,j (k1) |λk

12|
2
, Nρλ =

∫ +∞

−∞

dk1 p
(σ)∗
Ω′,j (k1) p

(σ)
Ω,j (−k1)λ

k ∗
12 ρk12, (31)

with ρk12 and λk

12 defined in Eq.(9).

7 One can recognize in Eqs.(25) and (26) the well-known Unruh effect: a uniformly accelerated observer feels in
the Minkowski vacuum a heat bath with a temperature proportional to the magnitude of his acceleration [18].
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Therefore, for mixed fields, the “usual” Rindler condensate of the inertial vacuum Eq.(26)
gets non-trivially modified, losing its original thermal nature. Anyway, it can be readily seen
that the standard value is recovered for θ → 0 and in the limit m1 → m2 (see Eq.(10)), as one
would expect in absence of mixing.
It is worth noting that the expectation value Eq.(30) is non-diagonal with respect to the
parameters Ω and Ω′. Since such a result has been obtained without using any approximation,
we can state that the factorization of the hyperbolic Bogolubov coefficients into the product of
a Dirac delta distribution of Ω and Ω′ with suitable functions adopted in Ref.[13] is not quite
correct. It is our purpose to discuss this and other aspects in a forthcoming paper.

5. Conclusions

The issue of flavor mixing from the point of view of a uniformly accelerated observer has been
discussed in the case of two complex scalar fields with different masses. In spite of such a
minimal setting, the Bogolubov transformation built in field mixing has been found to non-
trivially combine with the thermal Bogolubov transformation associated to the Rindler spacetime
structure, leading to a meaningful modification of the “usual” Fulling-Rindler spectrum. The
result obtained Eq.(30), in fact, shows that the particle distribution detected by an accelerated
observer in the inertial vacuum loses its thermal nature when mixing is taken into account.

We stress that the formalism developed in this paper represents an useful springboard for
studying flavor oscillations in the context of Quantum Field Theory on curved background.
Indeed, once extended to the fermionic case and, in particular, to neutrino fields, the results
derived within this framework can be compared with those obtained through the other
approaches dealing with such a problem [6, 7, 8]. Additionally, it may be taken as starting
point for investigating Lorentz invariance breakdown in the context of mixed neutrinos [19].
More work is inevitably required along these lines.
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