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Abstract. The KSS bound for the shear viscosity-to-entropy density ratio is employed
in the fluid/gravity correspondence setup, to provide a theoretical bound for the post-
Newtonian parameter in the Casadio-Fabbri-Mazzacurati black string solution that matches
the observational bound [1]. This derived bound is here shown to vary according to the black
string temperature, and, although the post-Newtonian parameter reaches bigger values as the
temperature increases for fixed black string masses, it is still into the observational /experimental
bound range. The Casadio-Fabbri-Mazzacurati-AdS black brane is shown to converge to the
Schwarzschild-AdS black brane, for sufficiently high order expansion of the dual boundary
energy-momentum tensor.

1. Introduction

Extra-dimensional generalisations of the general relativity comprise extended models with
unexpected consequences in the physics of black hole [2, 3] and ramifications into astrophysics
[4, 5]. Particularly, black strings represent physical solutions of the brane effective Einstein
equations [6, 7, 8, 9]. On the other hand, fluid dynamics can be thought of describing QFT,
in the long wavelength regime [10]. At low energies, the associated hydrodynamics describe
physical systems near the equilibrium and the transport parameters, for example conductivity
and viscosity, encrypt the information on the perturbations and their propagation along the fluid.
Such a paradigm relies on the AdS/CFT correspondence setup [11, 12], whose long wavelength
regime establishes the interplay between black holes solutions in (asymptotically) anti-de Sitter
(AdS) spacetime and hydrodynamics on the boundary, associated to a field theory in a strongly
coupled regime [13, 14]. A prominent feature in fluid/gravity correspondence is given by the
shear viscosity-to-entropy density ratio [10], whose universality, under certain conditions, has
been explored in various contexts [13, 14, 15, 16, 17, 18].

Black strings and black branes, thus, have hydrodynamical aspects beyond entropy and
temperature, encoded by transport coefficients as vorticity, viscosity, shear, diffusion parameters
and rates. Black strings and black branes solutions have the shear viscosity-to-entropy density
ratio /s that is bounded [15] !,
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! Units with A = ¢ = kg = 1 shall be employed; spacetime 4D indexes run in the range y = 0,1,2,3 and 5D
indexes run in the range A =0,1,2,3,4.
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which is called the Kovtun-Starinets-Son (KSS) result [15]. In the case of Einstein gravity or
any theory in the limit N, — oo, the KSS result is an equality n/s = 1/4w. This result is
derived in the context of SUGRA in a ' =4 SUSY SU(NN,) gauge theory, in the large 't Hooft
coupling constant regime g2N, [17]. The AdS bulk dynamics corresponds to vacuum states of
the boundary Yang-Mills setup, implying that AdS-Schwarzschild solutions are equivalent to
boundary gauge theory states [19]. Other solutions of the Einstein equations [20, 1] correspond
to a different thermal state in the boundary gauge theory.

The fluid/gravity correspondence was used to bound the post-Newtonian parameter
via the black string [1], using the CFM black strings [4] associated with the effective
Casadio-Fabbri-Mazzacurati (CFM) solutions [21, 22]. CFM metrics represent solutions
of the bulk Einstein equations projected onto the brane, having a parametrised post-
Newtonian parameter [ corresponding to the Eddington-Robertson-Schiff parameter, bounded
by experimental /observational data [23, 24]. In general, one can construct a dual fluid stress
tensor by solving the bulk Einstein equations in asymptotically AdS spacetime and taking
the long wavelength limit, but there are only a few black hole solutions that admit such a
hydrodynamic dual on the boundary, even asymptotically. CFM solutions were studied in the
context of the fluid/gravity correspondence [1]. A 5D CFM black string was proposed to have a
4D dual fluid dynamical prescription, and the fluid /gravity correspondence can impart a bound
for the parametrised post-Newtonian parameter, through the universal KSS bound (1). After
studying the bound for 3, derived by the KSS result using the CFM-AdS black string, here such
bound shall be further analysed, and its variation according to the black brane temperature
shall be scrutinised.

The procedure to reported in this paper is, after reviewing the CFM solutions, to use the
Green-Kubo formula to bound the parametrised post-Newtonian parameter through the shear
viscosity-to-entropy density ratio by including up to the second-order hydrodynamics terms,
discussing the unicity of the AdS-Schwarzschild solution.

2. A Casadio-Fabbri-Mazzacurati solution

In brane-world models, gravity can propagate into the bulk, originating a 5D Weyl fluid
term that is projected onto the brane-world, via the Gauss-Codazzi method. Such a term must
be taken into account in the Einstein effective equation. A by-product of the brane equations
is the CFM metrics [22], which are originally vacuum solutions of the Einstein field equations,
presenting a parametrised post-Newtonian parameter /3. Ref. [21], for example, reported a specific
bound for the parametrised post-Newtonian parameter, 5 ~ 1, by experimental /observational
data [?]. Indeed, classical tests of general relativity provides the bound |5 — 1| < 0.003 [23, 24],
bringing data about the vacuum brane self-energy [2, 25, 26, 21].

The 4D Einstein effective equations can be derived when the 5D bulk Einstein equations are
projected onto the 4D brane, by the Gauss-Codazzi method (the convention 87G =c=1=h is
going to be fixed?, where G = hc/Mg1 and M, denotes the Planck scale, and p, v, p,0 =0, 1,2, 3),
yielding [27]

1
Rw/ - iRg,uu + Ag/u/ - T;w =0, (2)

where R, R, and A are, respectively, the Ricci tensor, the Ricci scalar, and the 4D cosmological
constant. The effective stress tensor in Eq. (2) can be split into a sum, T, = Tj +Eu+0 15,
where the first component 7}, denotes the brane matter stress tensor, £,, inscribes high-
energetic corrections from the 5D Weyl fluid. The tensor S, encrypts Kaluza-Klein imprints
from the bulk onto the brane [27, 2]. Static, spherically symmetric, compact distributions on the

2 Obviously, the precise values of all involved parameters shall be suitably taken into account, in the calculations
in Sect. III.
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brane, read
Guv dz* dz” = —N(r) dt* + B(r) dr* +r* dQ* . (3)

The CFM metric is derived by dismissing the condition N (r) = B~1(r) [21]. The CFM I solution
comprises Eq. (3), with

2GM 1-3¢M
. and B(r) = = 2GM)[ (45 1] (4)

The solution (4) relies on the parameter 3, being the Minkowski solution recovered when M — 0.
The horizon 7 = R on the brane is derived by solving the algebraic equation B~!(R) = 0.
The sign of (8 — 1) determines whether the CFM solution is either colder or hotter than the
Schwarzschild solution [21]. Moreover, the 4D Kretschmann scalar Ry, o R diverges for r = 0
and r = GM(4ﬁ— 1).

N(r)=1-

3. Fluid at the boundary, dual to the CFM black brane/black string solution

Hydrodynamics is the low-energy effective description for the low-momentum regime of
correlation functions. Following the results derived in Ref. [1], the Green-Kubo formula plays a
prominent role in the linear response theory, where the shear viscosity represents a fluid transport
coefficient arising in response to a perturbation in the fluid stress-energy tensor.

The Kubo formula can be derived by coupling 4D gravity g,, to the fluid and determine
the way how the fluid energy-momentum tensor responds to gravitational perturbations. In
particular, for small metric perturbations which vary slowly in space and time, g., = gu + huw
with ||h,|| < 1, the stress tensor can be expanded in the metric fluctuation h,, and in
gradients [28]. This procedure was reported in Ref. [1], yielding

(T () = (T#) - /d‘*yG“”'”"(w W)y /d4 /d4zG“”"""T< 239, 2) hoo (9) g (2) + ..
= (Tloy) + (T +(Tly) + -+, (5)

where (TH) corresponds to h = 0 and G‘Ifzyl"' are retarded n-point correlators. The fluid response
to perturbations is derived via the conservation law V,T"” = 0 and the conformal condition
", =0.
At zero order in derivatives, the energy momentum tensor reads

T(’élg— (e + P)u*u” + Pgh” , (6)
where w* is the fluid four-velocity, € denotes its energy density, P the pressure and g,, is
the unperturbed metric on the 4D boundary where the fluid lives. The response of the two-
point function of the associated perturbed metric can then be written as the first order term

<Tl(“1,)) in the expansion (5), (T""(x)) ~ [dy G’ﬁ‘pa(x;y) hpo(y), where the retarded Green

function G%, vpo = (T"(x)T*°(y)) is employed [12]. Hence, from the gravity point of view
of the correspondence, the above perturbation should arise from metric fluctuations h,,, of the
appropriate black brane metric.

The first-order expansion of the hydrodynamical stress-energy tensor, also known as the
constitutive equation, includes dissipative terms, as well as shear and bulk viscosities. In curved
space-times, the first order contribution is given by [29]

T(T; = —prepr [(v(pua) -

2
3 9po VTUT) n+ Cgpav‘ruT] ) (7)
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where 7 is the shear viscosity, ¢ the bulk viscosity, and V, represents the covariant derivative
in the space-time metric g,,. In addition, P* = g*” + w#u"” is the projection tensor along
spatial directions. The contribution to the shear viscosity 1 comes only from the component
hay = hay(t) of hyy, and hy, = 0, otherwise [1]. Such fluctuations around thermal equilibrium
are small, making to assert the uniform fluid temperature 7 (z*) = 7o, at rest in the chosen
frame, ut = (1,u’ = 0).

The shear viscosity of the dual theory can be computed from gravity [13], by the Kubo
formula, relating the viscosity to equilibrium correlation functions.

5<Txy> = _Gzy\xy(q) h:cy ) (8)
where Gzy‘xy(q) = —i [dlz et §(20) (T (2#) T*¥(0)). The Green-Kubo formula reads,

G (W, 0)
== lim ©)
where & denotes the imaginary part.
The CFM black string associated to the CFM I solution are related to black branes in AdS
[1, 4], corresponding to a late time behaviour of their dual fluid. CFM black branes in AdS can
be also obtained as a perturbative approach of CFM black holes on the brane [1, 4]. The 5D
metric reads

2
gap dz? dzP = —N(r)dt* + B(r)dr® + 2—2 di? | (10)

where d2? = £72 di?, the length ¢ is related to the AdS curvature [20] and the metric coefficients
N and B equal the CFM expression (4). The entropy of these black strings can be computed by
using the Hawking-Bekenstein formula, S = ﬁ = % , where R is the event horizon radius
and V3 = /¢ [ (=2 dx?. Moreover, the volume density of entropy s = S/V3 must be finite, which
requires that 5 < 5/4 in Eq. (4). Introducing the variable u = R/r, and defining M = G M,
yields
1—3M
B(u) — 2R

(1-20w) [1- Jhu@s-1)

(11)

and the metric finally reads

2 2
gap dz? de® = —N(u) dt? + B(u) % du® + % d0? = gy du® + g, da* dz” (12)
The value for § was derived in [1] for the fixed black string temperature, from the KSS
result (1). The aim here is to analyse how the KSS behaves as the temperature increases. The
background metric (12) can be perturbed as gap — gap + hap [13, 15]. As mentioned before,
the contribution to the shear viscosity comes from a single component of the metric fluctuations.
Denoting this term by ¢ = ¢(t, u, &), the wave equation reads, after taking ¢ ~ e‘“* ®(u) [15]

Oy (\/—gguuﬁué) — V=gt ®~0, (13)

which can be specialised for both CFM I metric, provided by Egs. (4), that is

?d  Vdd 2M
du2+udu+<1_u>WQ(I>: > (14)
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where V is given by Egs. (29) in Ref. [1]. The retarded Green function [13, 14], Gg(w,0; 8) =
—/—g g** o* ‘jl—i w_so » for both cases in Eqgs. (29, 30) in Ref. [1] and then derive the shear
viscosity from the Green-Kubo formula (9). The resulting propagator yields

x —_ 0
s S w—0 w 47

where we remarked that both s and n do depend on . Eq. (15) was obtained in the linear
hydrodynamics regime, corresponding to the first two terms in Eq. (5), that is Egs. (6) and (7).
Including the second-order regime of a dual hydrodynamic prescription [10, 19, 30, 28], the
parametrised post-Newtonian parameter 8 bound can be refined.

Moreover, 0®? denotes the shear tensor and Q%% is the vorticity tensor. The second order
dissipative part in the expansion of the stress-energy tensor (5) reads

o « v 1 v 1 v «a
T('l;) = N7 |:<gpau Vpo—“ >L + 50"“ (vpup):| + /Q(ng — QUPUC) <2Paﬂ‘P’y RP( )¢

1 1 o o a
_BPOWPWRPMC> + 5pOlup’Yv ()\1 Ué PRUGIDW Ué QS 4, Qé Q’Y)C)

1
5 Par P (Mog o+ 2o ¢+ A Q) (16)

where ( - ), denotes the traceless component that is orthogonal to the fluid velocity. The
coefficients in (16) have different interpretations [28]. It is worth mentioning that the second-
order hydrodynamic transport coefficients x and \; have been calculated from the leading
order AdS/CFT correlators [16, 28, 30]to , corresponding to the black brane horizon response

properties. For instance, A3 = —4limg, o %ailimwl_m G@Y10210y - The obtained expressions
ko—s0 TF1 %R2 (550
are given by Eq. (37) in Ref. [1], irrespectively of the transport coefficients in the range in

Refs. [13, 19, 31].
If one now takes, as usual in the literature, hyy = hay(t, 2), Eq. (16) yields

. . /<(’/ .o
Tyay + T2)ay = =P hay — 1 hay + 070 hey — 95 [hxy + 8§hmy] ) (17)

where dots denote derivatives with respect to the time coordinate. The retarded Green function
reads

Gzylwy(Mm :P—inw—i-nmwQ—g [w? + K], (18)
providing the analogue of the Kubo formula with second-order derivative terms. The kinetic
parameters 7y and & are the coefficients of the w? and k? terms in the low-momentum expansion
of the retarded propagator. With the above expressions, and repeating the previous analysis,
one finds bounds — temperature dependent — for the parametrised post-Newtonian parameter
B, shown in Fig. 1. All terms in Eq. (16) are included, with transport coefficients provided by
Eq. (37) in Ref. [1]. The KSS bound is illustrated in Fig. 2, as a function of the mass and the
temperature. Although the KSS bound implies higher values for § as the temperature increases,
these values still match the experimental/observational bounds [23].

Refined expressions involving more transport coefficients, like in Ref. [32], could be used.
However, such contributions in the viscosity-to-entropy ratio would amount at most to order
10~? corrections in the bounds for 3. These preliminary results including second-order terms are
thus fully compatible with the observational bound |5 — 1| < 0.003 provided by the perihelion
shift [23]. Nevertheless, the main result here is that, since the parametrised post-Newtonian
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Figure 1. Allowed range for the parametrised post-Newtonian parameter [ as a function of the
mass M (in Solar mass units), for the CFM I case including second-order corrections.

parameter is bound to be close to the unity also in five dimensions, the CFM black branes
must effectively reduce to their Schwarzschild counterparts. In fact, the CFM metric reduces to
the Schwarzschild metric in the limit 5 — 1. Here, we proved that the KSS result forces the
CFM black branes to reduce to Schwarzschild black branes. For the boundary energy-momentum
expansion (5), the first order approximation (7) provides |f—1| < 107!, whereas the second order
approximation (7) provides |3 — 1| < 3 x 1072. When the higher order term (T’ (‘g’;) is included
in Eq. (5), one finds |3 — 1| < 1074, suggesting that 3 — 1 when sufficiently high-order terms
<T(’f1 V)> are taken into account in Eq. (5). This is in agreement with the conjecture of Ref. [33],
that the Schwarzschild black brane [34, 35, 36] is the unique static black hole solution of vacuum
gravity with a negative cosmological constant. In fact, Schwarzschild-AdS black branes can be
recovered from CFM-AdS black branes, providing fundaments for the proof of a conjecture [33],
that asserts that the Schwarzschild-AdS black hole is the unique, static, asymptotically AdS,

black-hole solution of gravity with a negative cosmological constant.

4. Conclusions
The shear viscosity-to-entropy ratio has been obtained with respect to the parametrised post-

Newtonian parameter of CEM-AdS black branes. The KKS result (1) yields the bounds on /3,
for different black brane masses. For fixed values of the black brane mass, 5 is shown to increase
with the black brane temperature, still in agreement with observational bounds. The KSS bound
yields the CFM black branes to converge to Schwarzschild black branes, when sufficiently high-
order terms in the boundary energy-momentum tensor (5) are taken into account, in agreement
with the conjectured unicity of the Schwarzschild black brane as a static black-hole solution of

vacuum gravity with a negative cosmological constant [33].
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