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Abstract. A detailed analysis of the quantum decay processes shows the survival probability
P(t) can not take that exponential form at any time interval including times smaller than the
lifetime 7. We show that for times ¢ ~ 7 and for the times later than 7 the form of P(¢) looks as
a composition of an oscillating and exponential functions. The amplitude of these oscillations
is very small for t < 7 and grows with increasing time and depends on the model considered.
We also study the survival probability of moving relativistic unstable particles with definite
momentum 7 # 0: It turns out that late time deviations of the survival probability of these
particles from the exponential-like form of the decay law should occur much earlier than it
follows from the classical standard approach resolving itself into replacing time ¢ by ¢/v (where
~ is the relativistic Lorentz factor) in the formula for the survival probability P(¢).

1. Introduction
Since the discovery of radioactivity and the formulation of the radioactive decay law by
Rutheford and Sody [1] there is a conviction that the decay law has the exponential form,
N(t) = Np exp [-At], where A > 0 is a constant, N (t) is the number of atoms of the radioactive
element at the instant ¢ > 0 and Ny = N(0). Wesisskopf~Wigner theory of spontaneous
emission [2] has extended this belief on the quantum decay processes: They found that to a
good approximation the quantum mechanical non—decay probability of the exited atomic levels
is a decreasing function of time having exponential form. Further theoretical studies of the
quantum decay process [3, 4] showed that such processes seem to have three stages: the early
time (initial), exponential (or ”canonical”), and late time having inverse-power law form [5].
Results of these theoretical studies were the reason that there is rather widespread belief that a
universal feature of the quantum decay process is the presence of these three time regimes. In this
situation, each experimental evidence of oscillating decay curve at times of the order of life times
is considered as an anomaly: The so—called GSI-anomaly [6, 7] is an example. The question
arises, if indeed in the case of one component quantum unstable systems such oscillations of the
decay process at the "exponential” regime are an anomaly. The another question is: Whether
and how such a possible oscillations depend on the motion of the unstable quantum system. So
we need also to know how to describe the decay process of unstable quantum systems in motion.
Studying text books one finds that if the decay law of the unstable particle in rest has

the following form P(t) = exp [—%] = P.(t), then in the case of the moving particle with

momentum p # 0 its decay law looks as follows P(t) = P(t;p) = exp[— Z,%t] = P.(t/7), where

Iy is the decay rate (time ¢ and [y are measured in the rest reference frame of the particle)
and + is the relativistic Lorentz factor, v = 1/4/1 — 82, B =wv/c, v = |U] is the velocity of the
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particle, ¥ = ¢p//p? + m3 ¢? and mg — is the rest mass. People are convinced that this equality
being classical physics relation is valid also for any ¢ in the case of quantum decay processes.
The problem seems to be extremely important because from some theoretical studies it follows
that in the case of quantum decay processes this relation is valid to a sufficient accuracy only for
not more than a few lifetimes 79 = //I [8, 9, 10]. All these problems require a deeper analysis,
elements of which will be presented below.

2. Properties of quantum unstable systems

Quantum unstable systems are characterized by their survival probability. We will assume that
the reference frame Oy is the common inertial rest frame for the observer and for the unstable
system. Now if the system in the rest frame is in the initial unstable state |¢) € H, (H is the
Hilbert space of states of the considered system) prepared at the initial instant ¢ty = 0, then the
survival probability (the decay law), Py(t), of the state |¢) decaying in vacuum is given by the
following formula P () = |ag(t)|?, where aq(t) is the probability amplitude of finding the system
at the time ¢ in the rest frame Oy in the initial unstable state |¢), ao(t) = (¢|p(t)). and |p(t))
is the solution of the Schrédinger equation for the initial condition |¢(0)) = |¢),

.0
i 10(1) = H|o(t), (1)

(We use units h = ¢ = 1). Here |¢),|4(t)) € H, and H is the total self-adjoint Hamiltonian of
the system considered. We have |¢(t)) = U(t)|¢), where U(t) = exp [—itH] is unitary evolution
operator and U(0) = I is the unit operator.

The rest reference frame Oy is defined using common eigenvectors of H and of the momentum
operator P:

Plu;p) = plu;p), and, Hl|w;p) = E'(u,p) |1 p), (2)

where = E'(11,0) € 0.(H) and o.(H) is the continuous part of the spectrum of H. Operators
H and P act in the state space H. We have (see [8, 9, 11, 12]),

E'(n,p) = V12 + () (3)

One obtains the rest reference frame Oy of the quantum unstable system assuming that p'= 0.
Then [u;0) = [u;p = 0) and

Plu;0) =0,  Hlp;0) = plp;0), (

where p € o.(H). Eigenvectors |u;0) are normalized as usual: (0; p|p';0) = 6(pu — p').

The unstable system in the rest frame Oy is modeled as the following wave—packet |¢o) =
def

|6p=0) = |9),

N
SN—

(@)
~~

o) =16) = [ () 13 0) dp, (

0

where pg is the lower bound of the spectrum o.(H). The expansion coefficients c¢(u) are functions
of the mass parameter p, (i.e. of the rest mass p). The state |¢g) is normalized as follows:

| lewPdn=1. )
Ho
The expansion (5) and relation (4) allow one to find the amplitude ag(t) [4, 13],
at)= [ wln) = dp, (7)
I

0
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where w(u) = |c(u)? > 0.
Note that the use of the Schrodinger equation (1) allows one to find that within the problem
considered.

.0
i (2l0(t)) = (Sl H]9(2))- (8)
This relation leads to the conclusion that the amplitude ag(t) satisfies the following equation
Oag(t
290U bt ao(t) Q
where (01H|6(0)
h(t) = ———=, 10
0= (10)

and h(t) is the effective Hamiltonian governing the time evolution in the subspace of unstable
states H| = PH, where P = [¢)(#| (see [14] and also [15, 16] and references therein). The
subspace H © H| = H, = QH is the subspace of decay products. Here Q =1— P. If (¢|H|¢)
exists then using unitary evolution operator U (t) and projection operators P and @ the relation
(10) can be rewritten as follows

(Pl HQU(t)|$)
ao(t) ’

This effective Hamiltonian h(t) can be also derived starting from the Schrodinger equation for
the total state space H and and looking for the rigorous evolution equation for a distinguished
subspace of states H | C H [14].

In general in the case of one-dimensional H there is

h(t) = (¢|H|p) + (11)

(1) = o(t) — 16(0), (12

and p(t) = R[A(t)], 76(t) = —2F[h(t)], are the instantaneous mass (energy) juq(t) and the
instantaneous decay rate, v4(t), [14, 15, 16]. The relations (9) and (10) are convenient when
the density w(u) is given and one wants to find the instantaneous mass p,(t) and decay rate
v4(t): Inserting w(p) into (7) one obtains the amplitude ag(t) and then one can find h(t) and
thus 114(t) and v4(2).

Note that the state vector |¢) of the form (5) describing a quantum unstable system can
not be an eigenvector of the Hamiltonian H, otherwise it would be that Py(t) = |(¢|p(t))|* =
|(¢| exp [—itH]#)|?> = 1 for all times t. So the mass (energy) of such a system is not defined.
Simply the mass can not take the exact constant value in this state |¢). In such a case quantum
systems are characterized by the mass (energy) distribution density w(u) and the average mass
<m >= f:; pw(p)dp or by the instantaneous mass (energy) fi4(t) but not by the exact value
of the mass.

As it was mentioned in Sec. 1 one of the aims of these considerations is to check whether
the decay law Py(t) may be of the pure exponential form at some time intervals. The simplest
way to compare the decay law Py(t) with the exponential (canonical) decay law P.(t), where
Pe(t) = |ac(t)|* and

ac(t) = exp [~ir (g — 2T, (13)

is to analyze properties of the following function [17]:

¢(t) = : (14)
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It is because [¢(t)|? = 2o One can easy find that

 Pe(t)
KO _ Ly~ L ety — L nioyc, (15)

where h(t) is the effective Hamiltonian defined by relations (9), (10). Let us assume now that
(¢|H|¢) exists and such instants 0 < t; < ta < oo of time ¢ exist that for any t € (¢1,%2) there is

C(t) = C(t1) = ((t2) = const & ¢y #0. (16)

It can occur only if %gt) = 0 for all ¢ € (t1,t2). By definition ((¢) # 0 and therefore from (15)
we conclude that it is possible only and only if

h(t) — (my — %r@ —0, for th<t<t, (17)
that is, if and only if
h(t1) = h(t) = h(ts) = const & ¢, £0 for t1 <t < to. (18)
From (11) the conclusion follows that the equality h(t1) = h(t) = ¢, can take place if
ao(t) (PIHQ U (t1)[9) = ao(t1) (¢ HQ U (¢)[¢). (19)

We have that ag(t) # 0, ao(t1) # 0 and |a(t)| < co. Hence A(t,t1) & ao(t)/ap(t1) is a complex
function such that 0 < |A(¢,¢1)| < co. Using this A(¢,?;) one can replace the relation (19) by

(PIHQU (1) | At t1)le) — W(t t1)le)| =0, (20)

where W (t,t1) = U™ (t1) U(t) is the unitary operator.
As it is seen the condition (20) can be satisfied in two cases: The first one is

and the second one takes place when [A(t,t1)|¢) — W(t,t1)|¢p)] # 0, and
(glH)" = Hlg) L QUt) [\t t)lg) — W(t,t)]e)]. (22)
The first case implies that h(t;) = h(t) = ¢, = const (which by (18) means that 8(%_(;,) =0) if

and only if the vector |¢) representing an unstable state of the system is an eigenvector for the
unitary operator W (t,t1). On the other hand if the condition (16) is satisfied then,
ap(t) _ ao(t) ac(t) i i
A, ) = = =exp|=(mg — L)t —t1)], 23
(1) = S0 = S0 2 = exp [y — 570~ 1) (23)
and thus for ¢t > ¢; one finds that in such a case there must be |A(¢,¢1)| < 1. This conclusion
means that the equation (21) has no solution when the condition (16) holds: Eigenvalues A(t,%1)
of any unitary operator must satisfy the condition |\(¢,¢1)| = 1.
Let us consider now the second case: The definition of the projectors P and @) suggests that
this case can be realized only if the vector H|¢) is proportional to the vector |¢): H|p) = ay|o).

So 8(%_(;,) = 0 if and only if the vector |¢) representing the unstable state of the system considered

is an eigenvector for the total Hamiltonian H, which is in clear contradiction with the condition
that the vector |¢) representing the unstable state cannot be the eigenvector for H.
Implications of the above conclusions for possible realizations of the relation (20) allow one
to deduce that the supposition that such time interval [t1, %3] can exist that h(t1) = h(t) = ¢; =
const for t € (t1,t2) and thus ((t) = const = ((t1) = ((t2) for t € (t1,t2) is false. Hence from
the definition of ((t) the conclusion follows: Within the approach considered in this paper for
any time interval [tq, t2] the decay law can not be described by the exponential function of time.
This conclusion is the general one. It does not depend on models of quantum unstable states.
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3. The Breit—Wigner (BW) model

In this part of the paper analytical results presented in the previous section will be illustrated
graphically. The typical form of the survival probability Py(t) is shown in Fig (1). The
calculations were made for the distribution of the mass (energy) density w(u) having the Breit—
Wigner (BW) form w(u) = wpw(p),

N I
wpw (1) = 7 O — po) e m0)20+ D2

(24)

where N is a normalization constant and ©(u) is a step function: @(u) =0 for p < 0 and
O(n) =1 for p > 0. The form of the decay curves depend on the ratio sg = 7, where
mp = mg — po: The smaller sg, the shorter the time when the late time deviations from the

exponential form of Py(t) begin to dominate.

Y

10721, . . . . .
0 20 40 60 80 100

Figure 1. Decay curves obtained for wpw (E) given by Eq. (24). Axes: © = t/79 — time t is
measured in lifetimes 7y, y — survival probabilities on a logarithmic scale (The solid line: the
decay curve Pgy(t) = |ag(t)|?; The dotted line: the canonical decay curve P.(t) = |a.(t)|?). The
case Sgp = mp—f = 1000.

Within the considered model the standard canonical form of the survival amplitude a.(t) is
given by formula (13) with mg and Iy replacing mg and I'y, (where I is the decay rate and
FLLO = FLO = 79 is the lifetime within the assumed system of units A = ¢ = 1: Here time ¢ and [
are measured in the rest reference frame of the particle), and thus P.(t) = |a.(t)|? = exp [ 22 1],
is the canonical form of the survival amplitude.

The situation when w(u) = wpw (i) is the typical case discussed in numerous papers and
used therein to model decay processes. Hence the need for analysis of the real form of the decay
curves obtained using w(u) = wpw (1) and this is why we consider this case here.

As already noted the function ((¢) (see (14)) is very helpful in achieving this goal. Analysis
of properties of |((t)|? allows one to visualize all the more subtle differences between Py(t) and
P.(t). The function () was used to find numerically |¢(¢)|? for w(m) = wpw (m). Results of

numerical calculations are presented in Figs (2) and (3): One can see that in the case considered

the form of |¢(¢)|? also depend on the ratio sp def TR = MR 1T

From results presented in Figs (2), (3) one can see that the oscillating decay curves of one
component unstable system can not be considered as something extraordinary or as anomaly:
It seems to be a universal feature of the decay process [17]. Results of the model calculations
presented in Figs (2) and (3) shows that at the initial stage of the "exponential” (or ”canonical”)
decay regime the amplitude of these oscillations may be much less than the accuracy of detectors.
Then with increasing time the amplitude of oscillations grows (see Fig. (3)), which increases the
chances of observing them. So the conclusion that this is a true quantum picture of the decay

process at the so—called ”exponential” regime of times seems to be justified.
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Figure 2. A comparison of decay curves obtained for wpw (1) given by Eq. (24) with canonical

decay curves. Axes: x = t/79p — time t is measured in lifetimes 79, y — The function
)= ()PP -1)= 7;28 — 1, where ((t) is defined by the formula (14). Left panel: sp = 10.

Right panel: sp = 100. Lower panel: sz = 1000.
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Figure 3. A comparison of decay curves obtained for wpw (1) given by Eq. (24) with canonical

decay curves. Both panels — Axes: x = t/79p — time ¢ is measured in lifetimes 79, y —
The function f(t) = (|[¢(#)]? — 1) = 228 — 1, where ((t) is defined by the formula (14),

Po(t) = |ao(t)|?, Pe(t) = |ac(t)]?. The case sgr = 1000.

4. Moving quantum unstable systems
Let us analyze now some properties of the moving quantum unstable systems. In this case
we need the probability amplitude a,(t) = (¢p|¢p(t)), which defines the survival probability

Pp(t) = |ay(t)]>. We have |¢,(t)) o exp [—itH]|¢p) in h = ¢ = 1 units. As it is seen we need
the vector |¢,) and eigenvalues E'(u,p) solving Eq. (2). Vectors |¢) which is defined by the
relation (5) and |¢,) are elements of the same state space H connected with the coordinate rest
system of the observer O: We are looking for the decay law of the moving particle measured by
the observer O. If to assume for simplicity that P = (P, 0,0) and that ¢ = (v1,0,0) = (v,0,0)

then there is = (p,0,0) for the eigenvalues p of the momentum operator P and |p] = p. Hence

(see [8,9, 11, 12]),
H|p;p) = V/ u? + p? | p) (25)

which replaces Eq. (2).

We can model the moving quantum unstable particle ¢ with constant momentum, p,
analogously as the quantum unstable system in the rest frame (when p' = 0), that is as the
following wave-packet |¢p),

o) = [ el sp) dm. (26)
I

0
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Here coefficients c(p) are functions of the mass parameter u, (in other words of the rest mass p),
which is Lorentz invariant and therefore the scalar functions ¢(u) of p are also Lorentz invariant
and are the same as in the rest reference frame 0.

The final relation for for the amplitude a,(t) results from (25) and form the equation (26),
(see [8, 9, 12]),

ap(t) = /oowm)e—iv““p“du. (27)

0

Results of numerical calculations are presented in Figs (4), (5), where calculations were
performed for w(p) = wpw () and po = 0, Ey/I'y = moy/Ip = 1000 and cp/Iy = p/TH = 1000.
Values of these parameters correspond to v = v/2, which is very close to 7 from the experiment
performed by the GSI team [6, 7] and this is why such values of them were chosen in our
considerations. According to the literature for laboratory systems a typical value of the ratio
mo/To is mo/Ty > O(10% — 10°) (see eg. [18]) therefore the choice mg/Iy = 1000 seems to be
reasonable minimum. Decay curves obtained numerically are presented in Fig (4) (see also [10]).
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Figure 4. Decay curves obtained for wpy (m) given by Eq. (24). Axes: x = t/79 — time t is
measured in lifetimes 7y, y — survival probabilities (Left panel: the logarithmic scales, (a) the
decay curve P,(t), (b) the decay curve Py(t/v), (c) the decay curve Py(t); Right panel: (a) -
Pp(t), (b) = Po(t/7), () = Po(t) ).

The ratio Py(t)/P.(t/) in the case of moving particles can be also calculated similarly as it
was in the case of quantum unstable systems in rest. Results of numerical calculations of this
ratio are presented in Fig. (5), and calculations were performed for w(p) = wpw (i) and for
po =0, mg/ Ty = 1000, cp/Ty = p/To = 1000 and v = v/2.
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Figure 5. Left panel. Axes: z = t/79 — time t is measured in lifetimes 79, ¥y — Ratio of
probabilities — Solid line: Pp(t)/P.(t/7v); Dashed line Py(t/v)/Pc(t/v). Right panel. Axes:
x =t/79 — time ¢ is measured in lifetimes 79, y — Ratio of probabilities: Pp(t)/Pe(t/7).

5. Summary
As it was pointed out earlier the mass (energy) of the system in the unstable state |¢) is
not defined: It can not take the exact value. Unstable system can be characterized by the



8th International Workshop DICE2016: Spacetime - Matter - Quantum Mechanics IOP Publishing
IOP Conlf. Series: Journal of Physics: Conf. Series 880 (2017) 012034 doi:10.1088/1742-6596/880/1/012034

mass distribution w(u), the average mass < m >= f:;) pw(p)dp and by instantaneous mass

(energy) pe(t) but not by the mass. Also it was shown that there is no any time interval in
which the survival probability (decay) law could be a decreasing function of time of the purely
exponential form: Even in the case of the BW model in so—called ”exponential regime” the
decay curves are oscillatory modulated with smaller or large amplitude of oscillations depending
on the parameters of the model. The another observation was that in the case of moving
relativistic quantum unstable system moving with constant momentum p, when unstable systems
are modeled by the BW mass distribution wpw (1), only at times of the order of lifetime 7
it can be Pp(t) =~ Py(t/y) to a better or worse approximation. At times longer than a few
lifetimes the decay process of moving particles observed by an observer in his rest system is

much slower that it follows from the classical physics relation Pp(t) a8 exp [—% Io]: There is

Pp(t) > Po(t/y), for t > 19. Therefore there is a need to test the decay law of moving
relativistic unstable system for times much longer than the lifetime. It was shown also that
in the case of moving relativistic quantum unstable system moving with constant momentum
P decay curves are also oscillatory modulated but the amplitude of these oscillations is higher
than in the case of unstable systems in rest.
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