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Abstract. Ultra-sonic enhanced flotation ore process is a more efficient technique for ore 
recovery than classical flotation method. A classical simplified analytical Navier-Stokes model 
is used to predict the effect of the ultrasonic waves on the cavitations bubble behaviour. Then, a 
thermodynamics approach estimates the temperature and pressure inside a bubble, and 
investigates the energy exchanges between flotation liquid and gas bubbles. Several gas models 
(including ideal gas, Soave-Redlich-Kwong, and Peng-Robinson) assuming polytropic 
transformations (from isothermal to adiabatic) are used to predict the evolution of the internal 
pressure and temperature inside the bubble during the ultrasonic treatment, together with the 
energy and heat exchanges between the gas and the surrounding fluid. Numerical simulation 
illustrates the suggest theory. If the theory is verified experimentally, it predicts an increase of 
the temperature and pressure inside the bubbles. Preliminary ultrasonic flotation results 
performed on a potash ore seem to confirm the theory. 

1.  Introduction 
Froth flotation is a widely commonly used effective process in mineral processing ([1], [2], [3]), 
wastewater cleaning [4], coal industry [5], and hydrocarbon pollution remediation [1]. The ability of air 
bubbles to selectively adhere to specific mineral surfaces and separating hydrophobic from hydrophilic 
materials ([1], [6]) makes froth flotation an effective technique widely used in the industry. Recent 
works have investigated froth flotation enhanced by ultrasonic stimulation ([3], [7]). In the previous 
paper [8], we have investigated the ultra sonic stimulation on flotation both at micro and macro scales 
showing that the overall flotation recovery increases due to an increase in bubble ability for capturing 
particles, especially because of higher particle-bubble collision and particle-bubble attachment 
probabilities.  

In this work, we focused on the thermo-dynamical aspects induced by ultra-sonic treatment at the 
bubble scale assuming the same model for ultra sonic wave as in [8] i.e. the theoretical oscillating bubble 
radius time dependent curves is modeled by a trigonometric polynomial previously ([9], [10]). A 
thermodynamics approach is suggested to model the energy exchanges between the liquid and the gas 
bubble submitted to an ultrasonic treatment; the temperature and pressure behavior of a bubble is then 
calculated together with the internal energy, total work, and heat exchange assuming various gas models 
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(including polytropic process, Soave-Redlich-Kwong, Peng-Robinson, and ideal gas). It is shown that 
the application of ultrasonic external fields increases the temperature and pressure of the gas trapped in 
bubbles. 

 
 

Figure 1. (a) Schematic cross-section with the different zones: 
1 - the pulp enters the cell from a conditioner, and flows to the 
bottom of the cell; 2 - small air bubbles are passed down as a 
vertical impeller; 3 - collection of the mineral concentrate froth 
from the top of the cell; 4 - pulp flows to another cell. (Modified 
after http://www.wikiwand.com/en/Froth_flotation ). 

Figure 2. Schematic view of bubble-particle interaction 
and forces acting on the bubble surface including the gas 
surface tension, the liquid viscous stress, the liquid 
pressure Pl, the gas pressure Pg, t is time, Rb the bubble 
radius, 𝑹𝒃 its derivate against time, µ the cinematic liquid 
viscosity, and s surface tension (after [11]) 

2.  Governing equations for bubble evolution under ultrasonic waves 
Hydrodynamics of single bubble immersed in a liquid subjected to ultrasonic waves can be described 
by the Navier-Stokes equations applied to the gas inside the bubble, initially at rest, and to the incom-
pressible liquid adjacent to the bubble wall. The Navier-Stokes equations can be solved analytically in 
spherical coordinates [9] or numerically using a radial formulation [10].  

2.1.  Solving Navier-Stokes equations 
A bubble at rest with mean initial radius R0, at pressure P0, and temperature T0, is immersed in an 
unbounded incompressible liquid submitted to an external time-dependent pressure at its boundary 
P∞(t)=P0+P(t), where t the time, and P(t) the time-dependent pressure time (including negative and 
positive fluctuations). Far from the bubble the temperature of the liquid is assumed to be constant at T∞. 
It is also assumed that the pressure and the temperature inside the bubble are always uniform, and 
therefore is time-dependant. The viscous Newtonian fluid is assumed incompressible with constant 
density r. The bubble has a spherical shape preserved during all the process, with radius R(t) oscillating 
through time under ultrasound. Neglecting gravitational forces, the Navier-Stokes equations (or mass 
and momentum conservation equations) describe the flow field surrounding the bubble [10]. The first 
one is the continuity of the liquid: 
	 	 $%

$&
+ 𝛁	. 𝜌	𝐮 𝑟, 𝑡 = 0	 (1)	

with u the liquid velocity, r the radial distance to the bubble center, and t the time. As the bubble is 
assumed to be spherical, Eq.(1) can be simplified into ¶ (r2 u(r,t)) = 0 using spherical coordinates, with 
solution for the radial velocity:  
	 	 𝑢 𝑟, 𝑡 = 5

67
𝐹(𝑡)	 	 (2)	

where F(t) is a function of time determined by the boundary conditions. Assuming no mass transfer 
across the bubble boundary, the wall velocity in a local coordinate system attached to the bubble is equal 
to the change rate of its radius u(Rb,t) = 𝑅; (where 𝑅; is the derivation of Rb against time t), thus F(t) = 
𝑅;< 𝑡 𝑅;, and consequently Eq.(2) becomes:  
	 	 𝑢 𝑟, 𝑡 = =>(?)

6

<
𝑅;	 (3)	

Neglecting the dynamic viscosity of the liquid, and substituting the radial component of the velocity, 
the radial component of the Navier-Stokes equation applicable to the liquid can be written as:  
	 5

%
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A6
+ AD

A?
+ 𝑢 𝑟, 𝑡 AD

A6
= 0	 − 5
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where 𝑃R(𝑅;, 𝑡) is the liquid pressure on the bubble wall which is equal to the sum of all forces acting 
on the wall bubble (Figure 2): (i) the gas pressure in the bubble	𝑃S, (ii) the viscous stress srr of the 
liquid; and (iii) the superficial tension t. It comes Pl = srr +t + Pg. The radial component of the viscous 
stress srr acting on the bubble wall depends on the liquid cinematic viscosity µ [12]: 
	 	 𝜎66 𝑟, 𝑡 = 2𝜇	 $D

$V
= −	4𝜇 =>

=>(&)
	 (5)	

The surface tension t acting in the bubble is given by the Laplace’s formula 𝜏(𝑡) = − <Y
=>(?)

 where s is the 
surface tension. A process for an ideal gas is polytropic and obeys the relation PVm = B if the ratio of 
energy transfers as heat dQ to energy transfer as work dW remains constant (dQ/dW= cst = K) at each 
infinitesimal step, m is the polytropic coefficient which depends on the nature of the process (and of the 
gas). For ideal gas, specific values of m vary between isothermal (m = 1) to isentropic (adiabatic or 
reversible) (m = g = 1.4 for air), g being the adiabatic coefficient. Assuming an ideal gas polytropic 
transformation for the gas trapped in the bubble, the gas pressure is equal to:  
	 	 𝑃S(t) = 𝑃S[

=>[
=>(&)

P\
	 (6)	

with 𝑃S[ the initial gas pressure in the bubble at rest. Assuming that at t = 0, Pl (Rb,0) = P0 and 𝑅; = 0, the 
initial pressure in the bubble becomes 𝑃S[ = 	

<Y
=>[

+ 𝑃 . Then, from Eqs. (5), and (6), the total pressure at 
the bubble boundary Pl can be written as:  
	 	 𝑃R 𝑅;, t = <Y

=>[
+ 𝑃

=>[
=> &

P\
− 4𝜇 =>

=>(&)
− <Y

=>(?)
	 (7)	

Other	gas	models	(including	ideal	gas,	Soave-Redlich-Kwong,	and	Peng-Robinson)	can	be	used	to	predict	
the	evolution	of	the	internal	bubble	pressure	(see	§2.3.		).		

2.2.  Effect of ultra sound on the bubble pressure boundary 
From P∞(t)=P0+P(t), and equating Eqs.(4) and (6), the time-dependent pressure term P(t) is equal to: 
	 	 𝑃 𝑡 = <Y

=>[
+ 𝑃

=>[
=> &

P\
− <Y

=>(?)
− 𝜌 𝑅;𝑅; +

z{
O
=>
=>
+ 	P

<
	𝑅;< − 𝑃 	 (8)	

The general model can be used to describe the time evolution of the bubble radius 𝑅;(𝑡) given by 
𝑅; 𝑡 = 𝑅;[𝑓 𝑡  with 𝑓 𝜔𝑡 = 1 + 𝜚 cos 𝜔 𝑡 + 𝜏^ + 𝜐𝜋 2 {1 − 𝜇′	[1 − exp	{sin	(𝜔 𝑡 + 𝜏^ )}]} with 𝜚 <
1, where the coefficients (R/R0, 𝜚, 𝜔𝜏^, n = µ’ = 1) are constant or function of the Deborah number De 
(R/R0(De), 𝜚(𝐷�), 𝜔𝜏^(𝐷�), n = µ’ = 0) [7], where De = lw  (with l the polymer relaxation time) [10]. 
Thus, Eq.(8) can be rewritten as:  
	 𝑃 𝑡 = <Y���

=>[
+ 𝑃 fNP\F5 − 1 + 𝑃 𝑓NP� 1 − 𝑓 − 𝜌𝑅;[

< 𝑓	𝑓 + z{
O=>[

7 𝑓𝑓N5 + 	P
<
𝑓< 	 (9)	

Eq.(9) gives explicitly the time-dependent pressure term P(t) as a function of the ultra sonic wave 
function f.  

2.3.  Pressure inside the bubble 
Eq.(9) gives the pressure of the liquid at the bubble boundary assuming a polytropic process for the ideal 
gas trapped in the bubble. Several other gas models (including Soave-Redlich-Kwong, and Peng-
Robinson) can be used to predict the evolution of the internal bubble pressure. 

Polytropic ideal gas process: (P): Pg(t) Vb(t)m = Pg0 Vb0
m = B where B is a constant, as Vb(t) = 

4/3p R3
b(t), reporting all constant terms in B’, it comes: Pg(t) Rb(t)3m = Pg0 Rb0

3m = B’ (with B’ = 3B/4p), 
then using the general model for describing the time-dependent bubble radius submitted to ultrasound, 
the gas pressure inside the bubble is given by: 𝑃S 𝑡 = <Y

=>[
+ 𝑃 fNP\. 

Soave-Redlich-Kwong gas model (SRK): 𝑃S 𝑡 = ℛ��(&)
��N�

− ��
��(��F�)

 with 𝑎 = ^.z<�ℛ7��7

��
	 ; b = 	 ^.^���zℛ��

��
 

where Tc and Pc are the critical temperature and pressure for the gas, respectively (for air Vm = 22.4l.mol-

1), and Â = 8.314 J.(K·mol)-1 ≈ 2 cal.(K·mol)-1 is the ideal gas constant. 
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Normally, 𝛼 = (1 + 0.48508 + 1.55171𝜔 − 0.15613𝜔< 1 − 𝑇6^.¡ )< with w the acentric factor, and Tr 
the dimensionless temperature Tr (t) = Tb(t)/Tc. Assuming no change of state in the bubble, the acentric 
factor can be neglected, so a simplified expression for 𝛼 = (1 + 0.48508 1 − 𝑇6^.¡ )< can be used.  

Peng-Robinson gas model (PR) is similar to the SRK model 𝑃S 𝑡 = ℛ��(&)
��N�

− �¢�

�� ��F<�¢ N�¢
7 with 𝑎£ =

^.z¡�<P¡ℛ7��7

��
	 ; b£ = 	 ^.^���¤�ℛ��

��
; 𝛼 = (1 + 𝜅 1 − 𝑇6^.¡ )< with 𝜅 = 0.37464 + 1.54226𝜔 − 0.26992𝜔<, but 

neglecting the acentric factor gives: 𝛼 = (1 + 0.37464 1 − 𝑇6^.¡ )<. The temperature Tb(t) can be 
calculated using the polytropic model.  

Generalized SRK-PR model: The SRK and PR model can be rewritten in a single equation: 𝑃S 𝑡 =
ℛ��(&)
��N�

− 𝐾 where K = KSRK = ��
��(��F�)

, and K = KPR = �£�

�� ��F<�¢ N�¢
7, for the SRK and PR models. 

2.4.  Temperature inside the bubble 
A polytropic transformation for an ideal gas model is assumed for estimating the uniform temperature 
inside a homogeneous gas bubble. 

Polytropic process: Tb(t) Vb(t)m-1 = Tb0 Vb0
m-1 = C (from reporting the ideal gas equation PV =nÂT in 

the definition PVm = B), where the constant C = B/nÂ; as for pressure, it comes: Tb(t) = Tb0 f
 3(1-m). 

Ideal gas model (I) : Pg(t) Vb(t) = nÂ Tb(t) and Pg0 Vb0 = nÂ Tb0 where n is the amount of gas (in 
moles), Â = 8.314 J.(K·mol)-1 being the ideal gas constant (equal to the product of the Boltzmann 
constant and the Avogadro constant). When ultra sounds are applied, it comes: 𝑇; 𝑡 =

𝑇;[f
P(5N\) <Y

=>[B[
+ 1  with a pressure equal to 𝑃S 𝑡 = 𝑃S[f

NP\ <Y
=>[B[

+ 1 . 

2.5.  Temperature in the liquid around the bubble 
The fluid temperature Tl around the bubble is given by the heat equation in spherical coordinates: 
	 	 A§C

A?
= ¨C

67
A
A6

𝑟< A§C
A6

− 𝑢 𝑟, 𝑡 A§C
A6
	 (10)	

where 𝛼Ris the liquid thermal diffusivity, u(r,t) the fluid radial velocity around the bubble, and 𝑇R the 
liquid temperature. Due to the nonlinearities, this equation has no exact analytic solutions. However, a 
relevant approximation of the solution valid when the thickness of the thermal boundary layer 
surrounding the bubble is small compared to its radius is given by [13]:  

	 	 𝑇M 𝑡 − 	𝑇© 𝑡 = 	 ¨C
ª
	

=>
7 « 	 ¬­¬® ®¯°>(±)

=>(²)G³²
´
±

𝑑𝑥?
^ 	 (11)	

An	approximation	of	the	analytical	solution	can	be	found	if	the	bubble	surface	is	assumed	to	be	maintained	
at	 constant	 temperature.	 Assuming	 that	 the	 spherical	 bubble	with	 a	 constant	 average	 radius	 Rb0	 and	 a	
constant	 average	 temperature	𝑇©	 at	 the	 bubble	 surface,	 is	 placed	 at	 rest	 in	 a	 stagnant	 fluid	 at	 constant	
temperature	𝑇�	(far	away	from	the	bubble),	 the	average	temperature	𝑇(𝑟)	 in	the	surrounding	fluid	is	an	

inverse	distance	function	of	the	distance	r	to	the	bubble	center	given	by	[14]	§ 6 N§¸
§¹N§¸

=
=>[
6
.	Notice	that	the	

temperature	profile	is	not	dependent	on	the	fluid	thermal	conductivity.	The	decrease	in	temperature	is	very	
fast	 locally,	 for	 small	 bubbles	 (around	 100µm),	 at	 a	 distance	 r	 =10R	 (1mm),	 the	 liquid	 temperature	
increases	only	of	about	3°C	for	a	temperature	difference	of	DT	=	𝑇© −	𝑇�	»	30°C.	

3.  Energy balance and thermodynamic considerations 
The energy balance in a bubble evolving under an external field such as ultrasonic treatment can be now 
calculated assuming a polytropic transformation and considering different gas models (Ideal, SRK, and 
PR). The first law of thermodynamics gives the total variation of the internal energy DUtot of a system 
as the sum of the total work Wtot and the total heat Qtot supplied to or escaping from the system through 
its boundaries: DUtot = Wtot + Qtot. 
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Table 1. Synthesis of theoretical formula and results from various numerical experiments  

 State equations 

Parameters Ideal gas Soave-Redlich-
Kwong Peng-Robinson 

Tb(t) 𝑇; 𝑡 = 𝑇;[f
P(5N\) 2𝜎

𝑅;[𝑃
+ 1  Tb(t) = Tb0 f

 3(1-m) 

𝑇;(𝑖𝑛°𝐶) 88.02°𝐶 61.62°𝐶 
𝑇;(𝑖𝑛	K) 361.17𝐾 334.77𝐾 

Pg(t) PÁ(t) =
𝑛ℛT� t
V� t

 
PÁ t

=
ℛT�(t)
V\ − b

−
aα

V\(V\ + b)
 

PÁ t

=
ℛT�(t)
V\ − b

−
a£α

V\ V\ + 2b£ − b£<
 

𝑃S(𝑖𝑛	𝑀𝑃𝑎) 0.158 0.124 
𝑊?Æ?(𝑡) 𝑊?Æ?(𝑡) = 𝑊^	 𝑓P(5N�) − 1  𝑊?Æ?(𝑡) = 𝑊^ 𝑓P(<N�) − 𝑓P(<N�) ; 	𝑊^ = 	

𝑚 − 1 𝑛ℛ	𝑇;[
𝑚	 𝑚 − 2

 

𝑊?Æ?(in 10-8 J) 0.087 62 
𝑄?Æ?(𝑡) 𝑄?Æ?(𝑡) = 𝑄^	 𝑓P(5N�) − 1  𝑄?Æ? 𝑡 = 4𝜋𝑄^𝑡	𝑓 𝑓P(5N�) − 1 ;	𝑄^ = 	𝑘	𝑅;[𝑇;[  

𝑄?Æ?(in 10-8 J) 0.13 14.2 

DUtot (t) 
∆𝑈?Æ?(𝑡) = 𝑊^ + 𝑄^ 	 𝑓P(5N�)

− 1  ∆𝑈?Æ?(𝑡) = 𝑊?Æ?(𝑡) + 𝑄?Æ?(𝑡) 

DUtot (in 10-8 

J) 0.217 76.2 
 
3.1.  Polytropic models (P) 

Internal energy of a bubble: for an ideal gas dU = ncV dTg = Ìℛ	Í§Î
ÏN5

	= Ìℛ	§Î
ÏN5

	 1 − 𝑚 ³Ð>
Ð>
	where n is the 

number of moles of gas, 𝑐Ð is the molar constant volume (𝑐B pressure) heat capacity of the gas, and g = 
𝑐B/𝑐Ð the heat capacity ratio (g =5/3 = 1.67 for monatomic gas with three degree of freedom, and 7/5 = 
1.4 for diatomic gas with five degree of freedom, g = 1.4 for air). After some arithmetic, it comes: 
DUtot = BÎ7Ð7NBÎ�Ð�

ÏN5
= 𝑈^	 𝑓P(5N�) − 1 , with 𝑈^ =

Ð[B[
ÏN5

<Y
=>[B[

+ 1 . If the transformation is isothermal 

(m=1), and the total internal energy variation is null DU =0 (adiabatic transformation). 
Total work: Assuming a polytropic process so Pg(t) Vb(t)m = Pg0 Vb0

m, the total work done by the 
system when the volume bubble changes from V1 to V2, is given by: 𝑊?Æ? = −𝐵 𝑃S(𝑡)𝑑𝑉

<
5 = −𝐵	 ³Ð

ÐÔ(?)
<
5 . 

For integration, one must separate the isothermal (m=1) to the non-isothermal (m¹1) cases; it gives after 
some arithmetic: m = 1, 𝑊?Æ? = 𝐵	ln	(Ð�

Ð7
); m¹1 𝑊?Æ? = 	

BÎ7Ð7NBÎ�Ð�	
�N5

. The total work can be rewritten in 

terms of temperature as: 𝑊?Æ? = 	 Ì	ℛ	 §7N§�	
�N5

. Finally, reporting in the total work expression the bubble 
pressure Pg(t) for an ideal gas polytropic process, and Vb(t) = 4/3pR3

b(t), it comes: m¹1, 𝑊?Æ? =

𝑊^	 𝑓P(5N�) − 1  where 𝑊^ = 	
Ð[B[
�N5

<Y
=>[B[

+ 1  with V0, P0, T0 are the volume, pressure, and temperature 
of the bubble at rest; for the isothermal case (m=1), 𝑊?Æ? = −	𝑊^

£ln	(𝑓) with 	𝑊^
£ = 3𝑛ℛ	𝑇 . 

Heat supplied by the liquid Qtot can be evaluated applying the first law of thermodynamics, for m¹1 

Qtot = DUtot - Wtot = 𝑈^ −𝑊^ 	 𝑓P(5N�) − 1 = 	𝑄^	 𝑓P(5N�) − 1 , with 𝑄^ = 	𝑉 𝑃
<Y

=>[B[
+ 1 5

ÏN5
− 5

�N5
. 

For an isothermal transformation (m =1) Qtot = - Wtot = 	𝑊^
£ln	(𝑓); when m = g = 1.4, the transformation 

is adiabatic as the total heat supplied to the system is null (Qtot = 0),  DUtot = Wtot.  
 

3.2.  Generalized SRK-PR models with m¹1 (isothermal case excluded) 
Total work: assuming a polytropic transformation, the gas pressure Pg and the bubble volume Vb are 
related by Pg(t) Vb(t)m = Pg0 Vb0

m = C; reporting the pressure given by the generalized SRK-PR gas state 
equation, it comes: ℛ��(&)

��N�
− 𝐾 	𝑉;� 𝑡 = 𝐶. By differentiation	𝑑𝑉𝑏 = 	−	

ℛ𝑉𝑏 𝑡 𝑑𝑇𝑏
𝑚 ℛ𝑇𝑏 𝑡 −𝐾 𝑉𝑚−𝑏

.  



6

1234567890

NAMES'16 IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 879 (2017) 012024  doi :10.1088/1742-6596/879/1/012024

 
 
 
 
 
 

6 
 

(a)   (b)  
Figure 3. (a) Calculated temperature inside a bubble for ideal (red), and polytropic (blue) gas model; (b) 
calculated pressure inside a bubble for ideal (blue), and SRK-PR (red) gas model. Average increase in temperature 
is about 43ºC, and pressure variation about 0.022 MPa. 

So the total work is given by Wtot = − 𝑃S 𝑡 𝑑𝑉;
<
5 = ℛÐ>

� ÐÔN;
𝑑𝑇;

<
5 , but as bubbles are spherical, Vm –

b » 4/3pR3
b0 so Ð>

ÐÔN;
≈ =>(?)

=>[

P
= 𝑓P; however, 𝑑𝑇; = 3 1 − 𝑚 𝑇;[𝑓

<NP�𝑑𝑓 so by integration, the total 

work is equal to: 𝑊?Æ? = 𝑊0 𝑓
3(2−𝑚) − 𝑓0

3(2−𝑚)  with 𝑊^ = 	
�N5 ℛ	§>[
�	 �N<

 (valid for a molar volume, n=1), 
where f0 is the f function at initial time t=0.  

3.3.  Heat transfer 
Two models, simple conductive and convective with a mobile bubble, are investigated.   

Simple conduction: the bubble is assumed to be motionless in the fluid with uniform surface 
temperature. The Fourier’s law in spherical coordinates gives the heat flux F at the surface of the bubble: 
𝛷 = 	 𝑘

𝑅𝑏(𝑡)
𝑇𝑏 𝑡 − 𝑇𝑏0  where k is the thermal conductivity (for water at T¥= Tb0= T0 = 298.15K 

(25ºC), k = 0.6071 W.m-1K-1). The total heat transfer through the bubble surface S is equal to: 𝑄?Æ? 𝑡 =
𝑆Δ𝑡𝛷 = 	4𝜋𝑅𝑏2(𝑡)Δ𝑡

𝑘

𝑅𝑏(𝑡)
𝑇𝑏 𝑡 − 𝑇𝑏0 . Starting from t=0 to Dt =t after some arithmetic, and 

observing §> ?
§>[

= 𝑓P(5N�), it comes: 𝑄?Æ? 𝑡 = 4𝜋𝑄^𝑡	𝑓 𝑓P(5N�) − 1  with 𝑄^ = 	𝑘	𝑅;[𝑇;[. 
Convective model with a mobile bubble: The motion of the bubble trough the flotation column creates 

a convective component for the heat transfer with water. Considering the bubble surface as isothermal, 
and applying the analytic method for laminar free convective heat transfer from isothermal spheres 
developed by [9], the heat flux at the surface bubble is: 𝛷 = 	𝑘 1

𝑅𝑏(𝑡)
+ 1

𝛼𝜋𝑡
𝑇𝑏 𝑡 − 𝑇𝑏0  where k is the 

thermal conductivity of the water, 𝛼 = Ú
%ÛÜ

 the thermal diffusivity, cP the constant pressure heat capacity, 
𝜌 = %[

5FÝ §> ? N§>[
 the temperature dependent water density with at T0 = 298.15K r0=997.05 kg.m-3, and 

b the water volumetric temperature expansion coefficient b =2.10-4K-1. After some arithmetic, it comes: 
𝛷 = 	𝑘	𝑅𝑏0

−1𝑓	𝑇𝑏0 𝑓
3(1−𝑚) − 1 𝛷Û with 𝛷Û = 𝑓N5 +

=>[� ÛÜ%[

Úª? 5FÝ§>[ �Þ(��Ô)N5
, being the convective term. Thus, 

the total heat transfer is given by 𝑄?Æ? 𝑡 = 4𝜋𝑄^𝑡	𝑓 𝑓P(5N�) − 1 	𝛷𝑐, this expression is similar to the 
conductive case, excepted that it is multiplied by the convective term 	𝛷Û. 

4.  Numerical simulation 
Numerical simulations were made using the following parameters ([9], [7]): P0=0.142MPa, 
s=0.0728N.m-1, Rb0=500-700µm, wt0=-0.374, R/R0=1, w =28.5kHz, m=1.2, µ=0, n=1, µ=0.025N.s.m-2, 
r=1,800kg.m-3, T0=298.15K, n=1mol, Â=8.314J.mol-1.K-1, and g=1.4. Results are summarized Table 1. 
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4.1.  Average temperature inside the bubble  
Temperature inside a single bubble submitted to ultrasonic waves was calculated over a period against 
time (wt), and fluctuates as a sinusoid (Figure 3a). Due to the compression of the gas, instantaneous 
temperature can reach punctually values as high as 300°C, but also decrease under 0°C during decom-
pression. The average value of the temperature 𝑇; =

5
<ª

𝑇; 𝜔𝑡 𝑑(𝜔𝑡)
<ª
^  was calculated by integration 

over one period of time. For the polytropic gas model, 𝑇;B = 334.77𝐾 = 61.62°𝐶, a value 
corresponding approximately to one third less than for the ideal gas model (𝑇;ß ≈ 88.02℃). Keeping the 
key parameters in the range 0 < 𝜚 < 1 and m=1.2, prevents singularities for the bubble behavior and 
shows that the instantaneous temperature of the bubble is always inferior to 600K (not thousand of 
degrees as reported in [15]).  

4.2.  Average pressure inside the bubble  
Pressure in the bubble fluctuates also as a sinusoid (Figure 3b), over a range of about 0.10MPa given 
the boundaries conditions used for the reported numerical experience. The SRK and PR gas models give 
identical results with bigger amplitude variations compared to the ideal gas model. The average value 
of the bubble pressure 𝑃S =

5
<ª

𝑃S 𝜔𝑡 𝑑(𝜔𝑡)<ª
^  calculated by integration over one period of time is 

𝑃Sá=â = 0.124𝑀𝑃𝑎 for the Peng-Robinson gas model and 	𝑃Sß = 0.158𝑀𝑃𝑎 for ideal gas model. 

4.3.  Average internal work and head transfer between the bubble and the liquid  
The average work done over a period by a bubble of radius equal to 500-700µm has been estimated at 
	𝑊?Æ?

ßS = 4.95 − 13.58×10N¡𝐽 for the ideal gas model, and at 	𝑊?Æ?
á=â/B= = 3.64−10.00×10NP𝐽 for the Peng-

Robinson gas model. The huge difference between the two models is in part explained by the higher 
power term affecting f in the Peng-Robinson model. The conduction model gives an average heat 
transfer of 	𝑄?Æ?

ßS = −8.08 − 22.18×10NP𝐽. 

5.  Thermodynamics variation against m and 𝝔 
5.1.  Effect of polytropic coefficient m on P, T, DU, Wtot, Qtot,  
P and T: Bubble average temperature and pressure increase when the process moves from isothermal to 
adiabatic (isentropic or reversible) both for the ideal and SRK gas model. Numerical results show 
unrealistic temperature and pressure for values greater than m » 1.21 (Figure 4a), indicating that heat 
and work flows in opposite directions (dQ/dW > 0), and the compression/decompression of bubbles 
would be closer to an isothermal than adiabatic process. The isothermal process (m=1) can be excluded, 
as heat is transferred through the bubble boundary from gas to the water given the thermal conductivity 
of water, so m would be in the range 1<m<1.21. High values near the adiabatic conditions (DU »0) 
indicate that energy does not escape but accumulates in the bubble, increasing dramatically both the 
temperature and the pressure.  

5.2.  Effect of ultra sonic wave amplitude 𝜚 
Assuming a range 0 < 𝜚 < 1 for the amplitude coefficient of the ultra sonic wave [7], and a polytropic 
process for an ideal or SRK gas, the temperature and pressure increase when the amplitude increases. 
For 0 < 𝜚 < 0.5, the temperature inside the bubble increases smoothly with 𝜚 up to about 100°C, to reach 
a sharp increase up to 300°C for 𝜚 » 0.8, as more energy is carried by the ultrasonic wave . The over-
pressure inside bubble also increases with 𝜚 from approximately 0.1 to 0.22MPa.  

5.3.  Effect of polytropic coefficient m on thermodynamics 
Internal energy DUI (ideal gas model), total work Wtot (SRK gas model), and heat exchanges Qtot 
(convective exchanges) have been calculated at the bubble scale over one period of time (Figure 5). As 
for average inside bubble temperature and pressure, they all reach high values nearby adiabatic 
conditions for (m> 1.21). 
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(a) (b)  
 Temperature Pressure Temperature Pressure 
Figure 4. Calculated temperature and pressure inside a bubble for polytropic and SRK models varying (a) the 
polytropic coefficient m and (b) the amplitude 𝜚 of the ultra sonic wave.  

(a) (b) (c)  
 Variation of bubble internal energy DU Total work Wtot Total convective heat exchange Qtot 
Figure 5. Calculated energy balance for polytropic and SRK models varying the polytropic coefficient m (for 
R0=13µm).  

 (a) (b) (c)  
Variation of bubble internal energy DU Total work Wtot Total convective heat exchange Qtot 
Figure 6. Calculated energy balance for polytropic and SRK models varying amplitudes 𝜚 of ultra sonic wave 
(for R0=13µm). 

5.4.  Effect of ultra sonic wave amplitude 𝜚 on thermodynamics 
The same energy balance was performed when varying the ultrasonic amplitude 𝜚 (Figure 6). As for 
average inside bubble temperature and pressure, the internal energy and total work increase as amplitude 
increases. For the ideal gas model, the total work and total heat transfer are similar, but differ when 
applying a convective model of heat exchange (and SRK gas model). In this last case, the total heat 
seems to increase against time, indicating that the cooling of the bubble by the surrounding liquid is too 
slow, leading to an overheating of the gas trapped in the bubble. 

6.  Conclusions 
This theoretical work demonstrates that the ultrasound effect on thermodynamics variables describing 
the temperature, pressure, internal energy, total work, and heat exchanges can be predicted at the bubble 
scale. The most direct impact is that under ultra sonic stimulation, the work required to modify the 
bubble volume is converted into heat that increases the average temperature of the gas trapped in the 
bubble, up to about 60°C, or more, depending on the ultrasonic wave amplitude, the nature of the gas 
and the process involved (isothermal or adiabatic). This heat is transferred to the surrounding liquid by 
conduction (or convection) through the bubble surface, maintaining average bubble temperature 
equilibrium by cooling. However, given the micro bubble size, the warming of the surrounding liquid is 
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limited at about 2°C, despite than nearby the bubble boundary, higher temperatures can be observed, 
implying in some case, the vaporization of the liquid, and thus the growing of the bubble. Inside bubble 
pressure increases by about 0.14MPa. Several assumptions have done during this theoretical work which 
may to be confirmed or not by experimental work, or by direct measurements of the bubble 
characteristics. The isothermal case is a very interesting case, because it induces a null internal energy, 
meaning that all the work done by the pressure forces on the bubble is integrally converted into heat 
supplied to the liquid around the bubble, without any lost due to the bubble heating/cooling, limiting the 
overall energy consumption due to ultrasonic stimulation. This favorable case should be searched when 
running a flotation process. Some authors suggest [12] the gas contained in the bubble does not 
correspond to a unique gas (air), but rather to a mixing of air and vapor created by boiling of the liquid 
surrounding the bubble. In this last case, it is required to take into account the energy used to vaporize 
the liquid in the energy balance, which is according to [12] higher than the energy used for 
heating/cooling the bubble, a point not investigated in this work. 
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