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Abstract. The paper investigates the surfactant effect on the interaction of solid particle and gas 

bubble in a liquid subjected to vibrations. Surfactant transport between the bubble surface and 

the surrounding liquid is limited by the adsorption-desorption process. The particle is subjected 

to the Stokes, Basset and buoyancy forces, and average force related to the inhomogeneity of the 

pulsational field. The problem is solved numerically. It is found that in the presence of surfactant, 

the impact of vibrations on the particle-bubble collision is weaker than in the absence of 

surfactant. Thus, higher vibrations intensity is needed for increasing the collision efficiency, 

together with a higher consumption in energy. 

1.  Introduction 

The effect of surfactant on particle-bubble interactions is the subject of interest in many studies (see, for 

example, [1], [2]). As well as direct measurements of the particle-bubble interaction [3], there are several 

theoretical investigations together with their comparison with experimental data [4]. The majority of 

these studies are focused on particle-bubble attachment, although for fine particles the most important 

sub-process is collision. The interest to this problem is justified by its applications to many technological 

and physical processes, especially flotation.  

In flotation theory, the bubble–particle interaction can hardly be modeled without taking into account 

for the hydrodynamic approach. However, existing theories of the flotation process are either of 

empirical nature [5], [6] or do not account for the action of the external fields [7], [8]. 

A theoretical model for bubble-particle collision in a liquid under external vibrations was developed 

in [9]. The ambient liquid was assumed to be incompressible and submitted to gravitational forces. 

Analysis of the different components of the pulsational field scattered on the bubble allows the 

estimation of their contributions to the radiation force acting on the particle. Trajectories of the particle 

motion near a pulsating bubble were calculated. The evaluation of the efficiency of the flotation process 

exposed to an ultrasound action is then discussed. 

In this study, the previously developed model is extended by taking into account the presence of 

surfactants. Analyzing the different components of the pulsational field scattered on the bubble surface 

in presence of surfactants, it is possible to calculate the average vibrational force acting on the particle. 

These results are compared with the cases where the surfactants are absent.  
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2.  Problem statement 

We study the behavior of a single solid particle near a gas bubble (Fig. 1). The system is subjected to 

the gravity field and to a vibrational field. The vibrations are considered as harmonic with amplitude b  

and frequency . We assume that the dissipative processes caused by the viscosity can be neglected as 

the investigated frequency is high. Thus, the viscosity of the fluid around the bubble and the particles is 

null (case of inviscid flow). Moreover the amplitude of the vibrations b  is considered to be small 

compared to the bubble radius, this allows to linearize the governing equations. Additionally, we assume 

that the applied vibrations are such that the liquid can be considered as incompressible. To increase the 

collision efficiency between the bubble and the particle surface, a soluble surfactant is added. The 

transport of surfactant between the bubble surface and the surrounding liquid is limited by an adsorption-

desorption process. 

 

Figure 1 Problem configuration, 1 – solid particle, 2 – gas bubble 

For studying the behavior of the system, it is convenient to decompose the motion into a fast 

(pulsational) and slow (average) components. Let us begin with the bubble pulsational motion under 

vibrations. 

3.  Pulsational velocity of ambient liquid 

We assume that the particle radius is much smaller than the bubble radius. It allows ignoring the 

effect of the particles on the pulsational flow scattered on the bubble. Under the effect of the vibration 

of frequency  , the total liquid flow around the bubble is composed of a vibration field in the absence 

of the bubble and a pulsational field scattered by the bubble and associated with its radial (or monopole 

[10]) and translational motion 

 p m tr  V v v v , (1) 

where the uniform pulsating field of amplitude 
vibV  can be written as 

 i

p vibRe( e )tv V  (2) 

z 

y 

 

x 

U

 vibV t

g

j2 

1 



3

1234567890

NAMES'16 IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 879 (2017) 012022  doi :10.1088/1742-6596/879/1/012022

 

 

 

 

 

 

Monopole bubble motion. We define the liquid flow 
mv  associated with the monopole (it does not 

depend on the angle), the bubble motion induced by the external pressure part is independent of the 

coordinates. The pressure at a long distance from the bubble can be represented in the form 

  iRe e tp q   (3) 

with q is the pressure amplitude, Re is the real part, t is the time, and i is the imaginary unit. As liquid 

is assumed incompressible, only the radial component must be account for  

 i1
m 2

Re e tc
v

r

 
  

 
 (4) 

where 
1c is an unknown constant, and r is the spherical coordinate. Then, according to the linearized 

Euler equation (
mv t p r      ), the pressure in the surrounding liquid is given by  

 
i1Re e tc

p i q
r


  

   
  

 (5) 

where  is the fluid density. On the bubble surface a kinematic condition and a normal stresses balance 

condition in the presence of surfactants are imposed: 
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 (6)

 where 2

g b
3p c R     is the gas pressure inside the bubble where 

g
 is the gas density and c  is the 

speed of sound, 
bR  is the bubble radius in equilibrium,   is the surface tension coefficient and its 

derivative      , where   is the surface concentration in surfactant, and  is the bubble surface 

deviation (i.e. the position of the bubble surface at time t determined from it position when the bubble 

is at equilibrium). 

We assume that the bubble remains spherical and that the thickness of the film formed by a surfactant 

is sufficiently small; these assumptions allow writing the equation of mass conservation for the 

surfactant as [11], [12] 

 

m
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t R


     (7)

 where 
0  is the surface concentration of the surfactant at equilibrium, and  at time t. 

The surface deviation can be obtained from Eq. (6) by substitution Eq. (4) and Eq. (5) and taking 

into account Eq. (7). Indeed, from Eq. (7) 
3

0 12 bi c R    , thus the boundary conditions Eq. (6) reads 
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which gives the amplitude of surface deviation as 

 
g2 2 0

b 2 2

b b b

3 2 4

q

R c
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
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
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 (8) 

Taking into account that the natural frequency of the bubble  2 2 3

0 g b b3 2c R R      and 0   , 

the surface deviation can be rewritten in the following form 
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Thus, the velocity and pressure in the surrounding liquid caused by a monopole bubble motion is 
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 (10) 

 
 

2 4
i ib

3 2 2

b 0 0

1
Re e e

4

t tqR
p q

rR

  

   

 
  
   
 

 (11) 

The velocity and pressure depend on the unknown liquid pressure q  far from the bubble, the far-

field pressure is found from the linearized Euler equation in the form 

  vib be ii tq    V r  

where br  is the radius-vector of the bubble center which is counted from the pressure nodes, and Vvib 

the fluid velocity due to the far field oscillating pressure. The coordinates of the nodes are determined 

by the type of generation of oscillations in the liquid. 

Finally, the velocity of the surrounding liquid due to the monopole bubble motion is obtained as 

 
 

 
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ib
m vib b 33 2 2
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Re e
4
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 
  
   
 

r
v V r  (12) 

Translational bubble motion. Let us proceed to the determination of the liquid flow induced by the 

translational oscillations of the bubble. The Euler and the continuity equations for incompressible liquid 

in a reference frame moving with the bubble center read 

 tr bd

d

p

t t

 
  



v U
, (13) 

 div 0v , (14) 

where  b tU  is the velocity of the bubble center relative to the laboratory reference frame. 

Far from the bubble the velocity is given by   bcosb t  v j U , where j  is a unit vector in the 

vibration direction. 

The kinematic condition and the condition of stress balance at the bubble surface under the 

assumption of negligible thickness of the surfactant film, are (see, for example[11], [12]): 
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where 
2 1

sin
sin

 
  

  
   
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 (we assume that the velocity field has axial symmetry), and   is the 

angle counted from the vibration direction. To have the problem closed, the mass conservation equation 

for the surfactant is needed  
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 (16) 

It is convenient to express the velocity in terms of flow potential  so that the continuity equation has 

the form of a Laplace's equation whose solution can be written as [13] 
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U r , (17) 
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where c2 is an unknown constant, and Ub is the velocity of the bubble center.  

From the kinematic condition, the surface deviation can be thus written as  i t

3Re cos ec   . 

However as the bubble is immobile in the reference frame attached to the bubble center, the translational 

oscillations of the bubble as a whole is null so 
3 0c  . Thus, the bubble surface deviation vanishes. It 

follows that the ambient liquid velocity due to the bubble translation motion takes the form  

 
3 3 3 3

i t i tb b b
tr 3 2 3 3

b 0

Re 2 2 cos e 2 sin e
12

r

b R R R

R r r
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
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 

  

     
        

       
v e e . (18)  

Notice that the velocities and coordinates rules for converting these quantity from the local reference 

frame attached to the bubble center into the fix laboratory reference frame are: 

 
b

  V V U ,   r r R , (19)  

where the velocity Ub of the bubble center reads 
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4
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R
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R
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 
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 


 
U j , (20) 

The coordinate are found by integrating Eq.(20) over time t (assuming    and Rb constant) 

 
3 2

b 0

3 2

b 0

4
3 sin
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R
b t

R
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

  
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R j , (21) 

Thus, the velocity in the laboratory reference frame can be obtained from the converting rules Eq.(19)  

        b bU U R          V r V r R j V r j V r j  (22) 

Neglecting the nonlinear terms (   R V r j  which is small under the small amplitude of vibrations 

assumptions, and omitting the primes in the liquid translation velocity in the laboratory reference frame, 

it comes: 

  
3 3 3 3

b b b

3 2 5 3

b 0

3 1 cos
12

tr

b R R R
t

R r r

 


  

  
     

    
V j r r j . (23) 

Finally, the liquid pulsational velocity around the gas bubble under external vibrations has the 

following form  

 
 
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vib b vib vib vib3 3 2 4 33 2 2
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3
=
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r r
V V r r V V V ,(24) 

which is in a good agreement with the results obtained in the absence of surfactant [7].  

4.  Trajectories of particle  

Let us consider the average particle motion. The particle is subjected to gravity g , buoyancy, 

Stockes, Basset forces and average force caused by the vibrations. The equation of the particle motion 

reads 

 
2

1
s vib s2 2

p p 1 10 1

1 d 9 9 d d

2 d 2 2 d

t
d d t

t R dt R t dt t t

 
    



    
           

     


r r r
F U U g  

where 
s  is the particle density, ,   are density and dynamic viscosity of the surrounding liquid, and 

the U  is the velocity field induced by the rising bubble, which according to [13] has the form  
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where 2

b 3u gR   is the bubble rising velocity, k  is the direction of its motion. 

For incompressible fluid, the average vibrational force acting on the particle from the oscillating 

liquid, is given in [14]. In the laboratory reference frame after averaging over the vibration period, the 

expression for the average vibrational force per unit volume was obtained in the form: 

 2s
vib

s

3

14

2

V
 



 


 



F . 

Here V  is the pulsational velocity of the liquid, described in the previous section (Eq. (24)). 

The equation of particle motion was solved numerically using the Euler method. For each time step, 

the Basset force was computed from the previous time steps using a Caputo-type fractional derivative 

algorithm for solving partial differential equations [15]. The calculations show that in the presence of 

surfactant, the effect of vibrations on the particle-bubble interaction is lower than in the absence of 

surfactant which means that to increase the interaction efficiency, higher vibrations intensity is needed, 

and thus more energy. 

 
Figure 2 Trajectories of the particle motion, dot lines with surfactants, solid lines without 

surfactants, lines 1,2 – 1.2s   , lines 3, 4 – 2s    . 

5.  Conclusions 

The solid particle behavior near a rising gas bubble in an incompressible liquid with surfactants was 

investigated under a gravity field and an external vibrational field. The surfactant transfer between the 

bubble surface and the surrounding liquid is limited by the adsorption-desorption process. The particle 

is subjected to the Stokes, Basset and buoyancy forces, and the average force due to the inhomogeneity 

of the pulsational field. The surfactants impact the pulsational bubble motion and decrease the bubble 

radius variations. It changes the radiation force value acting on the particle. 

The problem is solved numerically using the Euler method; the trajectories of the particle motion 

have been calculated. In the presence of surfactant, it has been shown that vibrations decrease the 
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particle-bubble collision efficiency compared to the case without surfactant; thus, to increase the 

collision efficiency a higher vibrations intensity is required, leading to larger energy consumptions.  

It should be noted, that the surfactants are widely used in the flotation process and their effects on 

other flotation sub-processes (attachment-detachment) are important. In future we plan to extend this 

analysis to other sub-processes of bubble-particle interaction. 
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