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Abstract. This study focuses on the development of novel dense and supported mixed-
matrix membranes based on chitosan and poly(2,6-dimethyl-1,4-phenylenoxide) (PPO) 
with low-hydroxylated fullerenol C60(OH)12. These novel membranes containing nano-
carbon particles were prepared to reach high membrane performances for further 
integration in a dehydration process like distillation coupled with pervaporation. SEM 
microscopy was used to visualize the internal morphology of the membrane. It was found 
that all membranes were well stable and highly water-selective in spite of the different 
nature of polymers.  

	

1. Introduction 

At the present time the membrane processes are of significant technological and economic importance in 
the chemical industry. Membrane methods are highly demanded in various industries for purification, 
concentration and separation of liquid and gaseous mixtures due to the compactness of the equipment, 
environmental friendliness and low energy consumption. One of the most promising processes for the 
separation of low-molecular liquid mixtures is the pervaporation. This membrane method is a low-energy, 
waste-free and environmentally friendly way of separating various mixtures: azeotropic mixtures, 
mixtures of isomers, and also close-boiling and thermally unstable substances. The operational 
characteristics of this method make it attractive to the chemical, petrochemical, biochemical, 
pharmaceutical industry, as an alternative method of separation by modern methods. 

Rapid development of membrane technology requires the creation of new materials with improved 
characteristics. One of the promising methods to get tailoring physico-chemical and transport 
characteristics of membrane materials is the modification of known polymers by carbon materials, i.e., 
the creation of membranes with a mixed matrix. 

Previous works showed the relevance of the use of fullerene and its water-soluble derivatives to 
improve the transport properties of pervaporation membranes as a modifier [1,2] and a cross-linking agent 
[3–5]. 

Two different types of polymeric materials were chosen as polymers: chitosan, a well-known 
hydrophilic polymer and polyphenylene oxide, a hydrophobic polymer. 

Many studies [6–11] are aimed at the study of chitosan as a membrane material because of its unique 
physico-chemical characteristics: high affinity for water, good film-formability, mechanical and chemical 
stability. However, chitosan-based membranes often have low selectivity due to excessive swelling in the 
water. To reduce the degree of swelling of chitosan in water, various methods of cross-linking the 
polymer (physical, chemical) are used, using, as a rule, toxic or ineffective cross-linking reagents 
(sulfuric acid, alkali, glutaraldehyde, acrylic acid, etc.). One of the most promising directions in this area 
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is the modification and functionalization of the polymer by nanoparticles. In this paper, fullerenol 
C60(OH)12 particles were as cross-linking agent. This choice was based on the previous studies on 
modification of PVA by fullerenol [3–5]. 

Polyphenylene oxide (PPO) is a glassy polymer with good film-forming and mechanical properties, 
which has thermal stability and chemical stability in solutions of alkalis, mineral acids and salts, in 
superheated steam environment, racks under radioactive irradiation and the action of microorganisms. 
Conversely to chitosan, this polymer does not swell extensively in water or protic solvents. In diffusion 
processes of separation, PPO exhibits properties as one of the most permeable glassy polymers especially 
for water. However, this polymer has a relatively low selectivity in the separation processes. Previously, 
attempts were made to improve the separation factor of PPO using laborious and unsafe methods of 
chemical modification of this polymer (sulfonation, bromination, alkylation, etc.) [12,13], but these 
methods have not found industrial applications to date. In the previous studies it was shown that in spite 
of hydrophobic nature of PPO under pervaporation separation of ethanol-water mixtures the main 
component of the permeate was water according to the mechanism described in [14]. In this work, the 
modification of the PPO by a nanoparticle (fullerenol C60(OH)12) has been studied with the aim to 
improve further the transport properties of membranes due to OH-groups of water fullerene particles.  

Therefore, the purpose of this study was to create a mixed-matrix membranes, characterizing their 
structural and transport properties in pervaporation.  

2. Experimental part 

2.1. Materials 
Chitosan with medium molecular weight and poly (2,6-dimethyl-1,4-phenylenoxide) (PPO)  were 
purchased from Sigma-Aldrich (USA) and used as the membrane materials. C60(OH)12 (Fullerene 
Technologies, Russia) was used for polymer modification. A porous membranes based on aromatic 
polysulfone amide (UPM, pore size 200 Å) and on copolymer of vinylidene fluoride (fluoroplastic F42L) 
and tetrafluoroethylene (MFFC, pore size 0.05 µm) were purchased from Vladipor (Russia) and a porous 
membrane based on polyacrylonitrile (PAN, pore size 200 Å) was purchased from Vladipor (Germany) 
and used as membrane supports. Ethanol and tetrahydrofuran (THF) was purchased from ZAO Vecton 
(Russia). 

2.2. Preparation of chitosan and chitosan-fullerenol membranes  

2.2.1. Preparation of composites. The chitosan-fullerenol composites were prepared by mixing solutions 
of chitosan in 1 wt.% acetic acid aqueous solution  and fullerenol in water in amounts that provided the 
required content of fullerenol in the composite (up to 1 wt.%). The resulting solution was allowed to stand 
for 3-4 days for interactions to take place between the polymer and fullerenol molecules. Next, the 
composite solution was sonicated for 40 min. 

2.2.2. Preparation of membranes. Dense membranes based on chitosan and fullerenol-chitosan 
composites with the thickness ~ 40 µm were obtained by casting a 1 wt.% polymer solution on a Petri 
dish. The solvent was removed by evaporation at 40 °C; the membrane was separated from the substrate 
and dried in a vacuum oven at 40 °C up to the constant weight. Then the membranes based on parent 
polymer and its composite were subjected to heat treatment at 140 °C during 100 min for cross-linking. 

The formation of the thin selective layer in the supported membrane was achieved by casting 1-wt% 
chitosan solution with and without fullerenol (1% to the weight of the polymer) onto the surface of the 
UPM and PAN supports and drying at room temperature to form a selective layer with a thickness of 2 ± 
0.3 µm, as determined by scanning electron microscopy. Cross-linking of the selective layer was achieved 
by heating the membrane to 140 °C for 100 minutes.  

The maximum concentration of fullerenol was limited to 1 wt.% in the case of chitosan and 2 wt.% in 
the case of PPO because fullerenol concentrations exceeding these concentrations resulted in a poor 
dispersion of fullerenol in solution.  

2.3. Preparation of PPO and PPO-fullerenol membranes  
 



3

1234567890

NAMES'16 IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 879 (2017) 012010  doi :10.1088/1742-6596/879/1/012010

	
	

2.3.1. Preparation of composites. PPO-fullerenol composites containing 2 wt.% fullerenol were obtained 
by thorough mixing of PPO and fullerenol powders in agate mortar. After the solid-phase interaction the 
composites were dissolved in chloroform. The PPO/fullerenol solution was intensely stirred and sonified 
before membranes preparation. 

2.3.2. Preparation of membranes. Dense membranes based on PPO and composites PPO-fullerenol with 
the thickness ~ 50 µm were obtained by casting a 4 wt.% polymer solution on a cellophane surface. The 
solvent was removed by evaporation at 40°C; the membranes were separated from the substrate and dried 
in a vacuum oven at 40 °C up to the constant weight 

Supported membranes were prepared by casting 4 wt.% PPO (or PPO-fullerenol) solutions in chloroform 
on the surface of an MFFC support consisting of a fluoroplast F42L layer and polypropylene base. To 
create a selective layer with 6-8 µm thickness. Then, the composite membrane was dried at room 
temperature during 1 day and after in a vacuum oven at 40 °C up to constant weight. 

2.4. Scanning electron microscopy 
SEM micrographs of the fracture surfaces perpendicular to the membrane plane were obtained using a 
Zeiss Merlin SEM. The homogeneous membranes were submerged in liquid nitrogen for five minutes and 
fractured perpendicular to the surface. The prepared specimens were observed using SEM at 1 kV. 

2.5. Pervaporation experiments 
The transport properties were studied using a laboratory cell [5]. 
A downstream pressure of < 10-2 kPa was maintained using a vacuum pump and was controlled by a 
pressure gauge. The permeate was collected in a liquid nitrogen trap, weighed, and then analyzed via gas 
chromatography. The gas chromatograph used (SHIMADZU GC-2010) was equipped with a HP-
PLOT/U column and a thermal conductivity detector to perform a quantitative analysis of the feed and the 
permeate composition.  

The membrane permeation flux J (kg/m2h) was determined to be the amount of liquid transported 
through a unit of the membrane area per hour and was calculated as:  

tA
WJ
´

=
           (1) 

where W (kg) is the weight of the liquids that permeated through the membrane, A (m2) is the effective 
membrane area, and t (h) is the measurement time.  

Each measurement was performed at least three times, and the average value was recorded for later 
analysis.  

 
2.6. Swelling Study 
Two types of dry non-porous membranes from PPO and chitosan were immersed in liquid at 20°C and 
atmospheric pressure for 10 days. At definite intervals, the swollen membranes were taken out from the 
weighing bottles, carefully wiped with filter papers to remove residue liquid on the membrane surface, 
and then quickly weighed. The experiment was carried out until the swollen membranes obtained a 
constant weight that indicated a state of sorption equilibrium. Then, the membranes were placed in a 
vacuum box at 40 oC for 7 days to control the weight of the dry membranes. The liquids under the study 
depend of the studied polymer and were water, THF, and ethanol. The degree of the swelling was 
calculated by the following equation: 

           (2) 
where Ms is the weight of a swollen membrane in equilibrium state and Md is the weight of a dry 
membrane. 

3. Results and discussion  

3.1. Scanning electron microscopy 
A detailed study of the inner membrane structure was carried out by scanning electron microscopy (SEM) 
using the Zeiss Merlin SEM microscope.  

d
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Figure 1 shows micrographs of the membrane cross-sections showing the features of the internal 
structure of chitosan-based membranes and the chitosan-fullerenol composite containing 1 wt.% 
C60(OH)12.  

 
a) chitosan 

 
b) chitosan-fullerenol (1%) 

Figure 1.  SEM micrographs of the cross-section of heat-treated membranes 
(140 0C 100 minutes) based on: a) chitosan, b) chitosan-fullerenol (1%) 

 
For membranes based on chitosan and its composite with fullerenol (Figure 1), the following changes 

are observed: cross-section of a membrane from pure polymer is relatively homogeneous, while for a 
membrane with 1 wt.% fullerenol surface roughness is observed and inclusions of nanoparticles are 
visible.  

Figure 2 shows micrographs of dense membranes based on PPO and PPO-fullerenol (2 wt.%) 
composite. As can be seen from the figure 2, the membrane from pure PPO has a roughness structure and 
heterogeneity, which increases with the introduction of fullerenol into the polymer matrix.  

 
a) PPO b) PPO-fullerenol (2%) 

Figure 2. SEM micrographs of cross-section of membranes based on: 

a) PPO, b) PPO-fullerenol (2%) 
 

The presented SEM micrographs demonstrated that the properties of the polymer matrix depend not 
only on the method of film formation, but also on the filler, in this case fullerenol. These changes in 
morphology under modification of the membranes with fullerenol are directly reflected on other physico-
chemical and transport parameters of the membranes, the results of which are presented in next sections.  
 

3.2. Sorption data 
The study of the equilibrium swelling of polymeric membranes was carried out for two reasons, the first 
is the determination of the degree of cross-linking of polymer chains (for chitosan). For this study, the 
membranes were immersed in water. The second reason is that the first stage of the pervaporation 
mechanism is sorption, so there is a need to study the sorption characteristics of the membranes with 
respect to the components of the separated mixtures (ethanol, tetrahydrofuran (THF)) to explain the 
mechanism of transport of low molecular substances

 

through the membrane. The results are shown in 
Table 1. 
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Table 1. Sorption characteristics of dense membranes. 

Membrane 
Sorption, % 

THF Ethanol Water 

chitosan 0,4  354,1 

chitosan-fullerenol (1%) 0  330,3 

PPO  7,8 0 

PPO-fullerenol (2%)  4,1 0 

 

The results presented in Table 1 indicate a decrease in the sorption capacity of fullerenol-modified 
membranes with respect to solvents as compared to unmodified membranes. The data of the table 
demonstrate that the degree of swelling in water and tetrahydrofuran of membranes based on chitosan 
decreases with the introduction of fullerenol into the polymer matrix, which indicates the cross-linking of 
polymer chains. Water is practically not sorbed by membranes from PPO and PPO-C60(OH)12. While the 
introduction of fullerenol into the PPO matrix reduces the degree of swelling in ethanol to 4.1%. Thus, 
the obtained data demonstrate different sorption behavior of membranes, which directly affects their 
transport characteristic. In the case of chitosan, the very low degree of swelling in THF and, conversely, 
the very high degree of water sorption indicate that both sorption and diffusion phenomena will favor 
water transport. On the other hand for PPO, the selective transport is expected to arise mainly from the 
facilitated diffusion of water in the glassy network.  
 
3.3. Pervaporation data  
The study of the transport properties of membrane was carried out in the process of pervaporation, which 
is an actual membrane process for the separation of low-molecular substances, especially for azeotropic, 
close-boiling and difficult-to-separate mixtures that are difficult to separate by simple separation methods. 
For the evaluation of membrane materials for industrial scale applications, it is necessary to take into 
account such properties as the possibility of using a membrane to separate the feed mixture and creating a 
supported membrane with a thin selective layer to increase productivity. The investigation of dense 
membranes is necessary to analyze the transport characteristics of the selected polymer and to exclude the 
influence of the substrate and defects in the selective layer of the supported membranes. The creation of 
composite supported membranes allows a significant increase in permeability. 

3.3.1 Transport properties of membranes based on chitosan and chitosan-fullerenol composite. 
Pervaporation of tetrahydrofuran (THF) - water mixture. The transport properties of membranes based 
on chitosan and its composite with fullerenol have been studied by separating the azeotropic composition 
of a mixture THF-water at 200C by pervaporation. Tetrahydrofuran is an important universal aprotic 
solvent. In the production process, water is a by-product of the reaction, in connection with which its 
dehydration is necessary. The difficulty in separating the THF-water mixture is that the THF forms an 
azeotropic mixture with water (5.7 wt.% water), which has a boiling point of 63.4°C, as well as strong 
hydrogen bonds. Thus, the use of distillation to separate this system is not advisable. 
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Table 2. Pervaporation of a mixture THF-water azeotropic composition at 20°C using dense and 
supported membranes based on chitosan and chitosan-fullerenol composite. 

 

Membranes 
(1400С 100 min) 

Flux 
(kg/m2 h) 

Permeate, wt.% 

water ethanol 

dense 
chitosan 0.090 97.35 2.65 

chitosan-fullerenol (1%) 0.063 99.34 0.66 

supported 

chitosan /UPM 0.133 94.05 5.95 

chitosan /PAN 0.125 96.38 3.62 

chitosan-fullerenol (1%)/PAN 0.099 98.37 1.63 

 

Table 2 shows the transport properties for thermally cross-linked (1400С 100 minutes) dense and 
supported membranes based on chitosan and chitosan-fullerenol(1%) composite. Dense membranes were 
studied to explain the mechanism of mass transfer. However, for use in industry, the thickness of the 
membrane must be reduced that can be achieved by creating supported membranes by depositing a thin 
selective layer on a porous support. In this paper, industrial ultrafiltration membranes based on 
polysulfonamide (UPM) and polyacrylonitrile (PAN) were chosen as porous supports. The thickness of 
supported membranes was about 2 μm. The flux for supported membranes increased in 1.47 times for the 
membrane on the UPM support and 1.38 fold for the PAN compared to the chitosan-based dense 
membrane. However, for the supported membrane on the UPM the selectivity with respect to water was 
decreased (to 94 wt.% of water) in the permeate compared to the dense membrane (97.35 wt.%) while the 
supported membrane on the PAN has good level of selectivity (96.38 wt.% water in permeate). Thus, the 
membrane on the PAN support was selected for further modification with a nanoparticle and further 
study. The introduction of 1 wt.% fullerenol into the chitosan matrix of the supported membrane on PAN 
significantly increased the selectivity (up to 98.37 wt.% water in the permeate) with a relatively similar 
flux (Table 2). Thus, a new effective nanocomposite supported membrane for purifying THF from water 
impurities was obtained.  
 
3.3.2 Transport properties of membranes based on PPO and PPO-fullerenol composite. Pervaporation of 
a mixture of ethanol-water. The effect of fullerenol C60(OH)12 (2 wt.%) on the transport properties of PPO 
membranes was studied for the separation of water-ethanol mixture. This mixture was chosen as previous 
studies demonstrated that for ethanol-water mixtures PPO exhibits water selective properties. In this case 
the modification of PPO by fullerenol could lead to the improvement of transport characteristics due to 
the change of surface and inner morphology of the PPO membranes. The system under investigation is 
characterized by azeotropic composition point: 95.57 wt.% ethanol and 4.43 wt.% water at 20°C, 760 
mmHg. The obtained results are presented in the table 3. 
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Table 3. Pervaporation of a mixture ethanol-water with azeotropic composition at 200C using dense 
and supported membranes based on PPO and PPO-fullerenol composite 

Membranes 
 

Flux 
(kg/m2 h) 

Permeate, wt.% 

water ethanol 

dense PPO 0.014 92.98 7.02 

PPO-fullerenol (2%) 0.028 95.12 4.88 

supported PPO /MFFC 0.181 91.41 8.59 

PPO-fullerenol (2%)/MFFC 0.313 94.11 5.89 
 

It was found that the introduction of fullerenol into the PPO matrix increases the flux (up to 0.028 kg / 
m2h) and the membrane selectivity (up to 95.12 wt.% water in the permeate) when the azeotropic point of 
the ethanol-water mixture was separated. The high selective properties established for the PPO-
fullerenol(2%) membrane make it promising for participation in real ethanol purification processes. 
However, the investigated membrane has a significant disadvantage - low productivity, which is largely 
determined by the thickness of the membrane. The dense membranes based on PPO had a thickness of ~ 
50 μm. To increase flux and preserve the mechanical characteristics, supported membranes consisting of 
a thin selective layer based on PPO and PPO-fullerenol(2%) composite (~ 2 μm) were deposited on a 
porous substrate that provided mechanical strength and practically no resistance to penetrant transport. 
The industrial MFFC membrane based on a copolymer of vinylidene fluoride and tetrafluoroethylene 
(fluoroplastic F42L) on a polypropylene base was used as the support. The choice of this type of support 
provided, above all, high flux and slightly changed of the separation factor. Thus, the creation of a 
supported membrane based on the PPO-fullerenol(2%) composite leads to a significant increase in flux 
(up to 0.313 kg/m2h) with comparatively the same selectivity (94.1 wt.% of water in the permeate) 
compared with the dense PPO-fullerenol(2%) membrane, which indicates the creation of a highly 
effective membrane for the purification of ethanol from water.  
 
4. Conclusions 

Novel dense mixed-matrix membranes based on chitosan and PPO were developed using low-
hydroxylated fullerenol C60(OH)12 as selective nanoparticles. In the case of chisotan, fullerenol acts also 
as a crosslinker. The introduction of fullerenol into the two different polymer matrices favors to rise the 
transport of water and creation of dehydration membranes with improved pervaporation transport 
properties. Clearly the use of fullerenol as nano-modifier for chitosan and PPO membrane led to the 
increase both flux and selectivity. The application of fullerenol as cross-linking for chitosan caused the 
increase of selectivity with the similar level of flux. Supported membranes having a thin, dense layer 
were also successfully prepared. These membranes exhibited much higher fluxes – factor 15 to 20 – while 
keeping almost constant the water selectivity.  
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