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Abstract. Collisions of ultra-relativistic heavy nuclei at the Large Hadron Collider (LHC) at
CERN and the Relativistic Heavy Ion Collider (RHIC) in the U.S. create energy densities where
nuclear matter melts into a plasma of quarks and gluons. I will summarize the accomplishments
of the ultra-relativistic heavy-ion program and present the “big questions” remaining to be
answered. In the process I will elucidate how the answers are being pursued and our current
understanding of the high density QCD matter created in these collisions. I will offer a brief
perspective on the planned detector upgrades, the presently envisioned future experiments and
collider facilities, and how they intend to address the remaining questions of the field.

1. Introduction
Since this conference covers a range of physics from nuclear and particle physics to

astrophysics, it is prudent to distinguish the experimental approach taken in relativistic heavy-
ion physics from the more commonly recognized approach of high-energy physics. This was
encapsulated succinctly by T.D. Lee (Nobel Laureate) at the dawn of the field in his infamous
quote [1]. “In high-energy physics we have concentrated on experiments in which we distribute
a higher and higher amount of energy into a region with smaller and smaller dimensions.
But, in order to study the question of ‘vacuum’, we must turn to a different direction; we
should investigate bulk phenomena by distributing high energy over a relatively large volume.”
This is a concise description of the approach of relativistic heavy-ion physics to investigate
Quantum Chromodynamics (QCD) at high energy density. At sufficiently high energy density
(temperature), the vacuum melts to form a Quark-Gluon Plasma (QGP).

This can be seen in any number of more recent lattice QCD calculations [2] that address
the behavior of QCD at high temperature. Those calculations conclude that the QCD vacuum
melts to form a QGP at temperatures Tc ≥ 160 - 190 MeV, corresponding to energy densities
ε ∼ 0.3 - 1.0 GeV/fm3. This would also then be the temperature of the phase transition from
quarks to hadrons in the expansion and cooling of the early Universe. Thus, the Standard Model
predicts a QCD deconfinement phase transition at T = 160 – 190 MeV, the same quark-hadron
phase transition that must have occurred in the early Universe, and could occur in the cores of
dense stars or in other aspects of stellar evolution. The goal of relativistic heavy-ion physics is
to create the QGP in the laboratory and to study its properties.
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2. An Ambitious Mission and Big Questions
Relativistic heavy-ion physics seeks to determine and understand the properties and states of

matter that exist at high temperature and density. More fundamentally, it strives to explore the
phase structure of a fundamental gauge theory QCD. Might our understanding of other gauge
theories (like gravity!) benefit from this? There are many questions to be addressed. Is the phase
diagram of QCD featureless above Tc? What are its constituents (are there quasi-particles, exotic
states, others)? Can we determine characteristics of the QGP such as its transport properties,
sound attenuation length, coupling strength αs(T ), sheer viscosity/entropy density ratio (η/s),
formation time (tf ), potential excited modes, and its equation of state? Finally, are there other
new phenomena or new states of matter at high energy densities [3]? Answering these questions
(and more) encompasses an extremely ambitious mission for the field of relativistic heavy-ion
physics!

3. Remarkable “Discoveries”
After a start in this exploration at various fixed-target facilities, the acceleration of heavy ions

at the CERN Super Proton Synchrotron (SPS) facility fostered sufficient energy to adequately
lead exploration in this field. The advent and use of colliders for heavy-ion physics, namely RHIC
and LHC, at significantly higher energies has led to a profound increase in our understanding of
the behavior of QCD at high energy density. Results from RHIC and LHC have been summarized
in detail in Ref. [4] and [5], respectively. I will focus in this presentation on what in my view
are the most significant results or debatably the “discoveries” of the field.1

Figure 1. Dielectron invariant mass spectra. Left: Elab/n = 200 GeV/n (
√
sNN= 19.6 GeV)

S-Au CERES data (circles), and contributions from hadron decays (as labeled) and their
systematic error (shaded region).[6] Right: STAR data after efficiency correction, compared to
decays of light hadrons and correlated decays of charm in Au-Au collisions at

√
sNN= 19.6 GeV.

[11] The data to hadronic cocktail ratio is shown in the bottom panel. Theoretical calculations
incorporating a broadened ρ are also shown. Systematic uncertainties for data (green boxes)
and the hadronic cocktail (gray band) are presented. See [11] for details and references therein
for details on the theoretical calculations.

1 I utilize this terminology with trepidation, and not scientifically justified in the literal sense, but I simply refer
to its relation and relevance to the Conference title and beg your scientific indulgence!
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4. Indications of Medium Modification and Possible Chiral Symmetry Restoration
in Low-mass e+e− Measurements

Investigation of low-mass electron pairs in the S-Au system at Elab/n = 200 GeV (
√
sNN=

19.6 GeV) by the CERES Collaboration at the SPS [6] revealed an enhancement of pairs in the
mass region (200 – 700 MeV) just below the ρ mass, compared to pairs produced from hadronic
decays. This is seen in Fig. 1 (left). The enhancement has been attributed in many theoretical
publications to broadening of the ρ in the nuclear medium [7] and possible chiral symmetry
restoration [8]. Subsequently, CERES has measured an enhancement in low-mass di-electrons
in Pb-Au collisions at Elab/n = 40 GeV [9] and NA60 an enhancement in low-mass muon pairs
in 158 GeV (

√
sNN= 17.3 GeV) Indium-Indium collisions [10]. STAR [11] has confirmed the

enhancement in Au-Au collisions at RHIC at the SPS c.m. energy, as seen in Fig. 1 (right).
STAR [11] and PHENIX [12, 13] have observed enhancements of di-electrons in the same mass
region in Au-Au collisions at

√
sNN= 200 GeV.

5. Thermal Radiation from the QGP
A thermal component of direct photons has been observed in central collisions (0-20%)√
sNN= 200 MeV Au-Au by PHENIX [13, 14] at RHIC and

√
sNN= 2.76 TeV Pb-Pb by ALICE

[15] at the LHC. After careful scaling by the number of binary collisions in next-to-leading
order perturbative QCD calculations and subtraction of the predicted direct photons (or in the
PHENIX case photons measured in pp interactions), an additional component of photons is
observed at momenta below ∼ 2.5 GeV/c. These photons represent a thermal component and
can be fit with an exponential to yield an inverse slope of T = 297± 12(stat)± 41(syst) MeV at
the LHC and T = 221 ± 19 (stat) ± 19 (stat) MeV at RHIC. This is a strong indication of direct
thermal radiation. However, it represents an integral of the radiation over the entire evolution
of the system, and thus the values of T may not be strictly due to thermal radiation. A detailed
comparison of the thermal photon emission data at RHIC energy [13] with a model assuming
formation of a hot system with initial temperature Tinitial ranging from 300 - 600 MeV at times
0.6 – 0.15 fm/c is in qualitative agreement with the data.

6. Particles Are Formed at the Universal Hadronization Temperature
The yields of produced hadrons have been measured extensively at mid-rapidity at RHIC and

LHC. The yields of the various types of hadrons have been compared to statistical hadronization
(thermal) model [16] calculations, which are successful at reproducing the relative abundances
of the observed hadrons. The model assumes rapid freeze-out, with typical implementations
utilizing as parameters only temperature T, baryochemical potential µB and volume V. Shown
in Fig. 2 (left) are results from the three RHIC experiments [17] and in Fig. 2 (right) those from
ALICE [18] at LHC. Global thermal model fits to data are represented as a horizontal line for
each ratio with the parameters T and µB presented in each figure. It is of interest to note that
the temperatures are similar for the two c.m. energies and near that predicted by Lattice QCD
as the deconfinement phase transition temperature and the quark-hadron phase transition in
the early Universe.

7. High Transverse Momentum (pT ) Hadrons Are Suppressed
The products of the scattering of partons (fast quarks and gluons) in the colliding nuclei serve

as probes with which to study properties of the hot QCD medium, since they are calculable in
perturbative QCD. As partons traverse the medium, they lose energy through interactions or
radiation leading to parton energy loss that alters the final distribution of high pT particles,
jets, and particles that contain heavy quarks.

Shown in Fig. 3 is the nuclear modification factor RAA for central collisions of heavy ions for
charged hadrons and pions at SPS, RHIC and LHC energies. RAA is the ratio of the spectrum
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Figure 2. Left: Measured ratios (ordinate) of various hadrons (abscissa) at mid-rapidity for
Au-Au central collisions by the three RHIC experiments (denoted by the different symbols in the
legend).[17] Right: Measured yields per unit rapidity at mid-rapidity in central Pb-Pb collisions.
A horizontal line for each ratio represents the result of a global thermal model fit to the hadron
yields in each figure with parameters in each legend.[18]

of particles at high pT in heavy-ion collisions compared to that in pp collisions, scaled by the
number of binary nucleon-nucleon collisions in the nucleus-nucleus geometry and given by

Ri
AA(pT ) =

d2N i
AA/dpTdη

〈TAA〉d2σiNN/dpTdη

where N i
AA is the yield for particle type i in nucleus-nucleus collisions and σiNN is the cross

section for particle i in nucleon-nucleon collisions. 〈TAA〉 is the ratio of the number of binary
nucleon-nucleon collisions (typically calculated in the Glauber or Glauber-Gribov model) to
the inelastic nucleon-nucleon cross section. RAA is expected to be unity in the case where the
nucleus-nucleus collisions are simply a superposition of nucleon-nucleon collisions in the absence
of nuclear effects such as parton-energy loss or color screening.

A large suppression (RAA < 1) is observed in Fig. 3 (left) for RHIC and LHC energies at
intermediate pT (between 2-20 GeV) with a gradual rise as pT increases beyond 20 GeV.[19]
Several model calculations [20, 21, 22, 23, 24] are shown, with somewhat divergent predictions.
The model predictions depend on their parton energy-loss mechanisms, e.g. scattering and/or
radiation and their assumed parton density. The observed suppression is in all cases a result of
parton-energy loss in the dense medium.2

Information on parton-energy loss mechansisms may be derived from differences in the energy
loss of propagating quarks and gluons by comparing the suppression of light and heavy quarks.
Shown in Fig. 3 (right) is RAA for D mesons (average of D0, D+, D±), π− from ALICE [26],
and non-prompt J/ψ mesons from CMS [27] as a function of centrality in Pb-Pb collisions.
The suppression of D mesons is consistent with that of charged particles, indicating that the
energy loss of the heavier charm quark is not very different (if at all) from that of light quarks.
The B-decays are less suppressed, which may indicate the emergence of the dead-cone effect
[28]. QCD predicts a dead-cone effect in which the radiation pattern of gluons from partons is
dependent upon the mass of the parton emitter. For quarks with mass m and energy E, radiation
is suppressed for emission angles θ < m/E, resulting in heavier quarks being less suppressed than
light quarks as observed for the B-mesons.

2 Note that an enhancement is observed at SPS energies, which is commonly attributed to the Cronin effect.[25]
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Figure 3. Left: RAA as a function of pT for central collisions of heavy ions for charged hadrons
and pions at SPS, RHIC and LHC energies (see legend). Various model predictions are also
shown (see text for details).[19] Right: RAA for D-mesons (average D0, D+, D±) and π− for
8 < pT < 16 GeV/c from ALICE [26] and for non-prompt J/ψ mesons with 6.5 < pT < 30
GeV/c from CMS [27] as a function of centrality (the mean number of participant nucleons in
the collision 〈 Npart 〉).

8. Jets Are Quenched and Dijet Energies Modified
Additional insight into the kinematics of the initial binary parton-parton scattering and

the parton energy loss is gained by measuring jets, dijets and γ-jet correlations in heavy-ion
collisions and comparing to results in pp and p-A collisions. Shown in Fig. 4 (left) are the RAA

from particles and jets [29] (see [5] and references therein) measured in central Pb-Pb collisions.
The electromagnetic probes (Z, W, γ) do not interact strongly and are thus unaffected by the
medium (RAA = 1). Charged particles are suppressed, although non-prompt J/ψ mesons are less
suppressed at pT< 20 GeV, as discussed above. B-jet suppression generally appears of similar
magnitude to that of inclusive jets indicating a lack of flavor dependence in the quenching
mechanism at large jet energies.

ATLAS [30] and CMS [31] have observed an energy imbalance of dijet pairs. The ATLAS
results for the dijet energy asymmetry AJ are shown in Fig. 4 (right) for

√
sNN= 2.76 TeV

Pb-Pb central collisions compared to 7 TeV pp data and Monte Carlo simulations using Pythia
dijets embedded in Hijing events, where AJ = (ET1 - ET2) / (ET1 + ET2). T1 is defined as
the highest transverse energy jet with transverse energy ET1 > 100 GeV and T2 the highest
transverse energy jet in the opposite hemisphere with ET2 > 25 GeV. The Pb-Pb events exhibit
a large asymmetry AJ with the away-side jet having lost considerable energy compared to that
observed in the pp data and Hijing + Pythia simulations. This is a clear indication of jet
quenching in Pb-Pb collisions at the LHC. It is interesting to note (although not shown here)
that the same measurements exhibit a peak at ∆φ = π in the azimuthal angular correlation
between the leading and the away-side jet with little difference in the ∆φ widths between the
Pb-Pb data and the pp data and Hijing + Pythia simulations. This latter result will require
further investigation with higher statistics. Clearly a better understanding of the fragmentation
and its modification in-medium and fragmentation of large energy heavy-flavor jets is necessary
and the subject of further studies.
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Figure 4. Left: RAA for charged particles, B-meson decays to J/ψ, electromagnetic probes (Z,
W, γ) and jets [29] measured in central Pb-Pb collisions (from [26] and [27]). Right: Transverse
energy asymmetry of dijets (defined in text) in central Pb-Pb data (solid circles) compared to
that observed in pp data (open circles) and Hijing + Pythia simulations (histogram).

9. Quarkonia - J/ψ and Υ Are Suppressed
Quarkonia, charmonium (cc) and bottomonium (bb), were predicted early-on [32] to be

sensitive to deconfinement in the medium via the color analogue of Debye screening. The
color screening of J/ψ was observed at the SPS, RHIC and LHC. Suppression of the Υ states in
Pb-Pb compared to pp at LHC, seen in Fig. 5 (left), provides strong evidence of effects of the
colored medium on the quarkonia [33]. The Υ(2S) and Υ(3S) states are observed to be more
suppressed than the Υ ground state in the Pb-Pb data.

Theoretically, a sequential melting scheme evolved for the various quarkonium states [34],
since the screening length in a deconfined medium depends on its temperature. The less tightly-
bound states dissociate at lower temperatures than those that are more tightly-bound, thus
producing a characteristic suppression pattern based on the binding energies of the quarkonia
and the temperature of the medium. Such a pattern is observed in Fig. 5 (right), which provides
a compilation of the measured suppression of the various J/ψ and Υ states as a function of
their binding energies [33]. This supports the predicted color screening picture. Lattice QCD
calculations are able to relate the degree of quarkonium screening to the temperature although
this is complicated by the time evolution and regeneration of bound states in the medium (see
[35]).

10. Collective Flow Indicative of a Strongly-Coupled Medium with Ultra-low η/s
(shear viscosity/entropy density)

A clear signature of collective flow was discovered in A–A collisions as early as the 1980s
at the BEVALAC [36] and later on at SPS, RHIC and LHC. The multi-particle azimuthal
distributions are analyzed typically utilizing Fourier-decomposition techniques. A substantial
second-order coefficient (v2), called elliptic flow and investigated thoroughly at RHIC and LHC,
is described well in a hydrodynamic description of a hot expanding fluid with a small shear
viscosity to entropy density (η/s) ratio. Presented in Fig. 6 (left) and Fig. 6 (right) are results
from RHIC and LHC, respectively, compared to a relativistic viscous hydrodynamic model with
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Figure 5. Left: Comparison of di-muon mass spectra measured in pp (dashed red) and Pb-Pb
(solid black) collisions. Right: Suppression of Quarkonium states as a function of binding energy.
(adapted from [33])

IP-GLASMA initial conditions and an evolution of matter through the quark-gluon plasma and
hadron gas phases [37, 38]. Various values of η/s are shown with η/s = 0.08 matching the RHIC
data from STAR and 0.08 < η/s < 0.16 being closer to the LHC data from ALICE. These values
are near the conjectured minimum value for an infinitely strongly-coupled theory [39, 40].

Figure 6. v2 as a function of pT . Left: from RHIC (STAR). Right: from LHC (ALICE). Data
are compared to a relativistic viscous hydrodynamic model with various values of η/s as shown.
[37, 38]

The transverse-momentum distributions of hadrons at low and high pT are sensitive to
properties of the different phases of a nuclear collision. At low pT production of hadrons is
governed by soft processes and the momentum distributions reflect properties of the medium at
kinetic freeze-out. The spectra of identified hadrons (primarily pions, kaons and protons) exhibit
a clear mass hierarchy where the inverse slope of the pT distributions increases with increasing
hadron mass. This is observed at RHIC and LHC energies and has been described in terms of
the emission of hadrons from a thermal system that is expanding radially at a common velocity.
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[41] In this scenario, heavier hadrons have larger momenta than lighter ones due to the common
radial flow velocity. At pT (> a few GeV) hadrons originate primarily from jet fragmentation
in hard scattering processes that occur in the initial phase of the collision.

11. Effects in Small Systems (p-A, high multiplicity pp)
Proton-proton (pp) and proton-nucleus (p-A) collisions have been investigated in order to

better understand phenomena observed in nucleus-nucleus (A-A) collisions. It is essential to
identify and separate experimentally and theoretically, to the extent possible, initial-state and
final-state effects. The p-A measurements can help to understand the initial state by establishing
the extent of gluon saturation and the possible existence of a color-glass condensate at low-x in
nuclei. Furthermore, the extent and impact of cold nuclear matter effects on the A-A data and
their interpretation, for example in terms of color screening and jet quenching, are critical in
understanding effects observed in the A-A data.

The results of measurements in small systems is the topic of another presentation3 and thus
only a summary is presented here. In measurements utilizing hard probes, no suppression of
particles at high pT nor quenching of jets is observed in p-A collisions. Neither are quarkonia
observed to be suppressed in p-A, whereas cold nuclear matter effects may be expected to induce
suppression. These measurements in p-A systems confirm that the quenching and suppression
in A-A collisions are final state effects that can be interpreted from theory to result from parton
energy loss and deconfinement in a high energy density environment.

One marked difference from the above conclusions that is observed in the p-A data is that the
low pT spectra and particle correlations in p-A exhibit similar effects as in A-A with regard to
the spectral mass ordering of hadrons attributed to collective (radial flow) in A-A systems (see
[41]). Furthermore, there are similar though weaker trends in the flow harmonic decomposition
of the particle correlations in p-A and in high multiplicity pp data. This has generated significant
interest and investigation to determine the smallest size and energy density of a droplet of QCD
matter that behaves like a liquid.

12. Remaining Questions for the Field
As we investigate high density QCD phenomena in collisions of various (large and small)

systems, there are still many questions to be answered! We seek to identify and separate the
initial state from the final state by comparing p-p, p-A, A-A results to answer questions like the
following. To what extent is there saturation in the initial state? Can nuclear parton distribution
functions be extended from our current knowledge to describe the initial state? Does it consist of
a color-glass condensate? What is the effect of cold nuclear matter on the final state observables
that are being measured? How does the system evolve and thermalize from its initial state?

We seek to identify the underlying dynamical properties of the QGP that describe mechanisms
of equilibration, transport and particle production (e.g. hadronization and fragmentation) and
the equation of state. Can we accurately determine η/s, the coupling αs(T ), the formation time
(tf ), sound attenuation length, the q-hat parameter (energy loss per unit length) for parton
energy loss and its underlying mechanisms as a function of temperature?

Investigation of the QCD phase diagram and its understanding is fundamentally important
to the field. Are there excited modes of the high energy density QCD medium, and if so what
are they? What are its constituents (are there quasi-particles, exotic states, others)? Is there a
critical point in the QCD phase diagram, and if so can we locate it? Is the QCD Phase Diagram
featureless above Tc?

We seek to better understand quarkonium melting (suppression) at the microscopic level.
What role and to what extent does quark recombination play and impact the suppression? What

3 “Small systems in p-Pb collisions,” Markert C, Proceedings of this Conference
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are the effects of cold nuclear matter on the observed suppression? Is the melting/suppression
sequence as a function of temperature consistent with Lattice QCD calculations as they evolve?

By identifying the dependence on the system size, multiplicity and c.m. energy of observables
that can be measured in pp, p-A and A-A collisions, we may be able to discriminate
various mechanisms and models. To make progress clearly requires close cooperation between
experiment and theory. Can there be new developments in theory (lattice, hydrodynamics,
parton energy loss, string theory, others) and an understanding across fields, with possibly a
combination of approaches where appropriate?

13. Future
In the near-term the RHIC Beam Energy Scan 2 is scheduled for 2018-2019.4 Its goal is to

investigate the QCD phase diagram by conducting a detailed scan at low c.m. energy in a search
for a critical point. It will also study fluctuation phenomena and properties of the collisions that
may shed light on the location of the critical point and properties of the medium.

A new detector sPHENIX5 is being constructed for high statistics jet and quarkonium
measurements at RHIC starting in 2022. These measurements seek to understand how the
properties of the QGP emerge from the underlying quark and gluon interactions, including its
temperature dependence and coupling strength. Precision jet and upsilon measurements will be
undertaken to probe the different length scales of the QGP to better determine and understand
its properties.

In Europe NICA6 and FAIR7 are expected to come online in the next several years. NICA is
expected to be commissioned around 2020, and will collide heavy ions at c.m. energies from 4 - 11
GeV per nucleon pair in order to investigate the QGP phase transition and critical point. FAIR
is on a similar timeline with an extremely diverse experimental program. In heavy ion physics
FAIR will investigate very baryon-rich matter at high densities, study in-medium modification
of hadrons and search for the critical point, to name a few goals.

A detector upgrade at LHC8 in 2018-2020 will increase capabilities allowing higher rate
heavy-ion operation in Run-3 starting in 2021. Along with detector upgrades, this will allow
detailed investigation of heavy flavor jets, jet substructure, high pT particles and heavy flavors,
and event-by-event correlations of hard and soft processes.

In the longer term, an Electron Ion Collider (EIC) has been designated by the U.S. Nuclear
Physics Community [42] as the next construction project for nuclear physics in the U.S. for
operation in the post-2025 timeframe. The EIC will allow an in-depth investigation of the
gluon-dominated low-x region of QCD. Goals are to investigate the position and momentum
distributions of quarks, gluons and their spins in the nucleon; to determine and investigate the
existence of gluon saturation and a possible color glass condensate; and to study the response
of the nuclear medium to traversing color charge.

Together these new capabilities should provide a strong and exciting physics program
internationally to investigate the questions raised by the field of heavy-ion physics and further
illuminate the properties of high energy density QCD.

Acknowledgments
This work was supported by the US Department of Energy under Grant DE-SC004168.

4 “STAR Beam Energy Scan,” Keane D, Proceedings of this Conference
5 “sPHENIX: The next generation heavy ion detector at RHIC,” Sarah Campbell et al.(sPHENIX Collaboration),
arXiv:1611.03003.
6 “Status of the NICA Project,” Trubnikov G, Proceedings of this Conference
7 “Physics at FAIR: Opportunities for South Africa,” Stoecker H, Proceedings of this Conference
8 “The Future Collider Program,” Gray H, Proceedings of this Conference



10

1234567890

International Workshop on Discovery Physics at the LHC  IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 878 (2017) 012002  doi :10.1088/1742-6596/878/1/012002

References
[1] Lee TD 1975 Rev. Mod. Phys. 47 267–75
[2] Karsch F et al. 2001 Nucl. Phys. B 605 579–99; Bazavov A et al. 2009 Phys. Rev. D 80 014504; Petreczky

P 2012 J. Phys. G 39 093002
[3] Alford M, Rajagopal K, Reddy S and Wilczek F 2001 Phys. Rev. D 64 074017
[4] Arsene I et al. (BRAHMS Collaboration) 2005 Nucl. Phys. A 757 1-27; Back B et al. (PHOBOS

Collaboration) 2005 Nucl. Phys. A 757 28-101; Adams J et al. (STAR Collaboration) 2005 Nucl. Phys. A
757 102-83; Adcox K et al. (PHENIX Collaboration) 2005 Nucl. Phys. A 757 184-283

[5] Averbeck R, Harris JW and Schenke B 2015 Heavy–Ion Physics at the LHC in The Large Hadron Collider—
Harvest of Run 1, Ed. Schörner–Sadenius T (Switzerland: Springer) chapter 9 pp 355–420

[6] Agakichiev G et al. (CERES Collaboration) 1995 Phys. Rev. Lett. 75 1272–5
[7] Rapp R and Wambach J 2000 Adv. Nucl. Phys. 25 1–164
[8] David G, Rapp R and Xu Z 2008 Phys. Rep. 462 176–217
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