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Abstract. Confinement is a remarkable nonperturbative phenomena emerging from QCD and
QCD-like theories. A theoretical understanding of these transitions and their interrelations is of
fundamental importance. While it is widely perceived that their dynamics arises from nontrivial
topological configurations in Yang-Mills theories, a concrete and sophisticated realization of
such idea is an outstanding challenge. We report significant progress along this direction by
the construction of a new framework based on correlated ensemble of instanton-dyons, namely
the constituents of the finite-temperature instantons with non-trivial holonomy. We present a
comprehensive numerical study of confinement properties in SU(2) Yang-Mills theory at finite
temperature, obtaining important observables such as the effective holonomy potential, the
static quark potentials from Polyakov loop correlators as well as spatial Wilson loops, among
others.

1. Introduction
The Quantum Chromodynamics, or QCD, is established as the fundamental quantum field
theory of strong nuclear force underlying all of nuclear physics. Despite its great success in
describing an impressive variety of nuclear phenomena in Nature, a key aspect of QCD remains
mysterious and poses a great challenge to our understanding. While the theory has quarks and
gluons as its basic degrees of freedom in the Lagrangian, the colored quarks and gluons are
absent from the observed physical spectrum in which the various color-singlet hadronic states
emerge instead. This phenomenon, often referred to with the broad term “confinement”, occurs
also in a wide variety of QCD-like theories and notably in pure Yang-Mills theories. The latter
fact makes it obvious that confinement arises from the nonperturbative gauge dynamics in the
gluonic sector.

At finite temperature, the expectation value of the Polyakov loop at spatial infinity
(holonomy)

L∞ ≡ lim
|~x|→∞

1
Nc

TrP exp

(
i

∫ 1/T

0
dτA4

)
(1)

plays the role of the order parameter in the deconfinement phase transition; suggesting
that topological gauge configurations with non-trivial holonomy may drive the mechanism of
confinement.
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Based on the caloron solutions with nontrivial holonomy and nontrivial topology to the
classical Yang-Mills equations, known as the KvBLL calorons [1, 2, 3]; in particular, its
“constituent” dyon fields (also called instanton-dyons), a promising approach has emerged for
understanding the nonperturbative phenomenon of confinement through a statistical ensemble
of such objects.

This talk is based on the extensive work presented in [4] where we report a thorough
numerical investigation of the confinement dynamics in SU(2) Yang-Mills theory by constructing
a statistical ensemble of correlated instanton-dyons. Here, we summarize our high precision
results for the holonomy potential, the order parameter for confinement transition, as well as
the temporal and spatial Wilson loops with an emphasis on the influence of finite volume effects.

2. Construction of Correlated Instanton-Dyon Ensemble
2.1. The Partition Function
The partition function of the instanton-dyon/antidyon ensemble is constructed from the one-loop
quantum weight of the KvBLL caloron in the limit of large dyon separation [5], then extended
to arbitrary number dyons and antidyons, resulting in

Z = e−V P (ν)
∑

NM ,NL,
NL̄,NM̄

1
NL!NM !NL̄!NM̄ !

∫ NL∏

l=1

fLT 3 d3rLl

NM∏

m=1

fMT 3 d3rMm

×
NL̄∏

l̄=1

fL̄T 3 d3rL̄l̄

NM̄∏

m̄=1

fM̄T 3 d3rM̄m̄
det(GD) det(GD̄) e−VDD̄ , (2)

where fM = ΓS2e−νSν
8ν
3
−1 and fL = ΓS2e−ν̄S ν̄

8ν̄
3
−1 are the fugacities per (anti)dyon species

L, M , L̄, M̄ , and the holonomy parameter ν(ν̄ = 1− ν) is defined through L∞ = cos(πν). The
sum runs over the total number of dyons and antidyons in the system and the measure is given
by the product of an uncorrelated part det(GD) det(GD̄), namely the corresponding “Diakonov
determinants” [6], and a correlated factor e−VDD̄ which introduces dyon-antidyon interactions
given by [7][8]

VDD̄ =





∑
j>j̄

2S
(

1
ζj
− 1.632 e−0.704ζj

)
e−MDrjj̄ if ζj > ζ0

j , for LL̄,MM̄

∑
i>j

V C
ij if ζj < ζ0

j , for LL, L̄L̄,MM,
M̄M̄, LL̄, MM̄

∑
i,j̄

S
πTrij̄

e−MDrij̄ for M̄L, L̄M

0 for LM, L̄M̄,

(3)

where ζj = 2πνjTrjj̄ , MD is a screening mass introduced as a parameter, V C
jj̄

= νjVc

1+e
(ζj−ζ0

j
)

is

a repulsive core potential where Vc and ζ0
j are also parameters which need to be tuned for the

simulations.
For simplicity, all quantities are rescaled with temperature T ; however, the temperature

dependence is defined through the running of the coupling constant in the caloron action S,
which at first loop approximation, is given by
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Figure 1. Free energy density F = − logZ of the dyon ensemble in the density range
0 ≤ nD ≤ 0.5.

S(T ) =
8π2

g2(T )
=

22
3

log
(

T

Λ

)
, (4)

where Λ is the scale parameter in the regularization. Therefore, by varying S as a parameter
in the simulation, one can define Λ at the observed critical point (T = Tc) and then establish
the temperature dependence of the observables as T/Tc.

Through Monte Carlo methods, the ensemble is simulated on a box with periodic boundary
conditions of volume V0 = 43.37 and a total number of (anti)dyons of each kind running from
ND = 0 to 22, i.e. the dyon density range spanned was nD = 0 to 0.5.

3. Confinement-Deconfinement Transition
3.1. The Holonomy Potential
Above some critical temperature Tc, SU(2) pure gauge theory is expected to have a second
order deconfinement phase transition, with 〈L∞〉 as the order parameter characterizing its
criticality. When the gauge field is that of the KvBLL caloron, the order parameter takes
the form 〈L∞〉 = cos(πν), so one expects to observe the breaking of the Z2 symmetry of the
theory through the free energy density, either as a function of L∞ or ν.

1 shows the free energy density for S = 5, 6, . . . , 13. It was found that for 5 ≤ S ≤ 7 the
minimum of the free energy density lies at νmin = 0.5, namely maximal non-trivial holonomy.
For S > 7 the shape of F/V becomes that of a symmetric double well potential with νmin < 0.5.
Therefore, the critical temperature is defined at S = 7, fixing the scale parameter at Λ = 0.385Tc.

Universality and the Svetitsky-Yaffe conjecture [9], allow to explore the role of 〈L∞〉 as an
order parameter of the deconfinement phase transition, given that it should follow the power
law

〈L∞〉 = a(T/Tc − 1)β [1 + b(T/Tc − 1)ω] , (5)

for temperatures close to Tc. 2 shows a fit from the numerical results of the dyon ensemble in
the interval 1 ≤ T/Tc ≤ 1.505. This result shows the continuous nature of the phase transition
and is in qualitative agreement with the lattice results from [10].

As for the expectation value of dyon densities, depicted in 3, one can see that at T ≤ Tc,
the L and M type densities are fairly equal. In the confined phase, the preferred holonomy
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Figure 2. L∞ as an order parameter of
the phase transition. Fitted to the critical
exponents β and ω of the 3D Ising model.
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Figure 3. Temperature dependence of the
ensemble average of dyon densities.

corresponds to the maximal non-trivial one where both dyon types have the same core radius
and therefore equal weight in the partition function. For T > Tc, the prefered holonomy starts
to shift towards the trivial one (ν → 0) and the M dyons become larger and larger.

3.2. The Polyakov Loop Correlator and the Spatial Wilson Loop
In the study of confinement, it is of most importance to look at the interaction between a
static (infinitely heavy) quark-antiquark pair. A successful confining theory should have an
asymptotically linear rising potential at large separations between the static sources in the form
Fqq̄||~x−~y|→∞ ≈ σe|~x− ~y|, where σe is the so called electric string tension. At finite temperature,
the color averaged heavy quark-antiquark potential F avg

qq̄ is defined through the expectation value
of traced Polyakov loop correlators. Moreover, according to the color decomposition 2⊗2̄ = 1⊕3,
an SU(2) quark-antiquark pair can interact through a singlet and a triplet channel like

eF avg
qq̄ =

1
4
e−F 1

qq̄ +
3
4
e−F 3

qq̄ , (6)

where

e−F avg
qq̄ ≡ 1

4

〈
Tr L†(~x)Tr L(~y)

〉
and e−F 1

qq̄ ≡ 1
2

〈
Tr

[
L†(~x)L(~y)

]〉
. (7)

On 4 we show the singlet channel free energy F 1
qq̄ as a function of interquark separation |~x−~y|

for different temperatures. One can see, that below Tc, there is a linear rising potential with
almost constant slope σe; however, for T > Tc, the slope starts to decrease until it reaches values
close to zero, implying a deconfined phase.

As for the spatial Wilson loop, it is known that at finite temperature it does not provide
a good measure of the deconfinement phase transition, given that even above Tc it shows area
law behavior and an increase of the magnetic string tension σm [11, 12, 13, 14]; nonetheless,
the restoration of Lorentz symmetry (Euclidean O(4)) at T → 0 suggests that in this limit, σm

should coincide with the electric string tension σe. Therefore, the interest is to show that the
spatial Wilson loop defined as

WC ≡ 1
2

Tr P exp
[
i

∮

C
dxiAi(x)

]
, (8)

follows the area law
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Figure 5. Area law for the spatial Wilson
loop in the fundamental representation at
confined and deconfined phases.

〈WC〉 ∼ e−σmAC (9)

in both confining and deconfined phases. On 5, the negative logarithm of 〈WC〉 in the
fundamental representation is plotted as a function of AC and it can be seen that for large
contour areas, indeed has an almost linear rising.

To end this section, we recall that in the units used in this work, the string tension is
dimensionless, meaning that when restoring physical units it goes as σm → σm/T 2. As has been
established before, σm increases with T ; however, σm/T 2 should decrease as the temperature
rises [13], which is in fact in agreement with our results.

4. Finite volume effects
To look into the possible effects which a finite volume have on the computed observables, we
performed tests increasing the volume of the box to two and three times the previous volume
used V0.

1 contains numerical values of ensemble averages of the dyon densities at different
temperatures as well as the free energy density for νmin obtained at V0. It can be seen that
the volume effects in the densities are significantly smaller than in the free energy density, which
in fact are considerably small.

Another test on the influence of volume was done with the static quark-antiquark potentials.
On 6 we show the results of the singlet channel potential calculated in a box twice the size of the
previous volume used. The curved tails which were present at large distances, seemed to appear
only at the edge of the box, suggesting it is merely a finite volume effect of the simulation.
At intermediate distances both potentials match substantially well showing the expected linear
rising behavior.

5. Conclusion
Confinement is a remarkable nonperturbative phenomenon in pure Yang-Mills and QCD-like
theories. The mechanism of confinement remains a significant challenge to our understanding
and is generally believed to pertain to certain nontrivial topological configurations of the gluonic



6

1234567890

XL Symposium on Nuclear Physics 2017 (Cocoyoc2017) IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 876 (2017) 012014  doi :10.1088/1742-6596/876/1/012014

Table 1. Volume dependence of the free energy density and ensemble averages of dyon densities
for V = V0, 2V0 and 3V0, with V0 = 43.37.

T/Tc V0 2V0 3V0

0.761 -1.251 -1.275 -1.283
F/V 1.000 -0.790 -0.813 -0.826

1.314 -0.416 -0.433 -0.444

0.761 0.317 0.320 0.315
〈nL〉 1.000 0.259 0.259 0.260

1.314 0.075 0.077 0.077

0.761 0.317 0.315 0.312
〈nM 〉 1.000 0.261 0.262 0.259

1.314 0.215 0.216 0.215

sector. The recently found KvBLL caloron solutions with nontrivial holonomy, consisting
of constituent dyons, have provided a concrete and promising path of investigation. We
conclude that an ensemble of such objects correctly produces the various essential features
of the confinement dynamics from above to below the transition temperature. These features
include the evolution of holonomy potential with temperature, a second order phase transition
in terms of the order parameter (Polyakov loop expectation value), the linear static quark-anti-
quark potential, etc. Given such success, it appears reasonable to believe that the ensemble of
correlated instaton-dyons may indeed hold the key of confinement mechanism.
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