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Abstract. CDCC calculations of total fusion cross sections are presented for reactions of
the weakly bound 6Li with targets 144Sm and 154Sm at energies around the Coulomb barrier.
Couplings to the low-lying excited states 2+, 3− of 144Sm and 2+, 4+ of 154Sm are included in
the calculations. In the cluster structure frame of 6Li→ α+d, short range absorption potentials
are considered for the interactions between α- and d- with the target to account for fusion.
The effect of the excited states of the target on total fusion is investigated, as well as, that
from couplings of resonance states of 6Li, namely, l = 2, Jπ = 3+, 2+, 1+. The latter effect is
calculated by two different approaches, (a) by considering only resonance states couplings and
(b) by omitting these states from the full discretized energy space. Among other things, it
is found that resonance and non-resonance continuum couplings give rise to small and similar
fusion suppression at the higher energies.

1. Introduction

Lately, reaction mechanisms involving weakly bound nuclei, both stable and radioactive, have
been a subject of strong research [1, 2, 3, 4, 5]. Among the most interesting and studied
subjects is the effect of breakup of the weakly bound projectile on elastic scattering and fusion
reaction processes. The characteristic low binding energy associated to this type of projectiles
affects reaction mechanisms mainly in two ways. Namely, the static effect due to the large
diffusivity of the projectile matter density. This stretched density lowers the Coulomb barrier
and hence enhance fusion. On the other side, the high projectile breakup probability produces
strong repulsive couplings that affect elastic and fusion mechanisms. The repulsive polarization
potentials so produced, are most important at energies around the barrier and thus, cause fusion
suppression.

Other features of reactions with weakly bound nuclei that have been a topic of experimental
and theoretical research are the different fusion mechanisms that take place, that is, complete and
incomplete fusion. Complete fusion (CF) can be direct complete fusion (DCF) which is a process
similar to fusion between strongly bound nuclei, that is, fusion that occurs without a previous
excitation of breakup channels. Also, the Sequential complete fusion (SCF) that consists of
fusion of all the projectile fragments after a previous breakup. From an experimental point
of view, it is very difficult to distinguish the evaporation products from a compound nucleus
produced by DCF or SCF, for that reason, only the sum of CF and SCF can be measured.
On the other hand, another reaction mechanism is the incomplete fusion (ICF), which is the
partial absorption of some fragments while others fly away to the continuum. Total fusion TF,
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commonly the quantity measured, is the sum of the complete and incomplete fusion. Recently
the separate experimental determination of complete and incomplete fusion has been achieved
for some reactions with light weakly bound projectiles on medium mass and heavy targets. This
has been possible since, contrary to the case of light targets, the compound nucleus decays by
the emission of uncharged particles [6, 7, 8]. Another process with weakly bound projectiles
is the elastic breakup (EB), in which none of the fragments after breakup is absorbed by the
target. It is now well known that in reactions with weakly bound nuclei, couplings from the
elastic channel to continuum breakup states, as well as, continuum-continuum couplings have a
profound effect on elastic and fusion mechanisms. To study these effects, a complete theoretical
description should include all of the aforementioned reaction processes in a single calculation.
Presently, the most powerful theoretical tool to do this type of calculations is the Continuum
Discretized Coupled-Channel (CDCC) model[9, 10, 11]. This approach has been used to a large
range of weakly bound nuclear systems, for instance; the 2n-halo 6He projectile on 59Co and
208Pb [12, 13], 6Li with targets 28Si, 59Co, 58Ni, 144Sm and 208Pb [9, 12, 14, 15, 16, 17, 18, 19].
Also, 7Li with 28Si [20, 21] and 144Sm [22], the n-halo 11Be with 208Pb [23] and the p-halo 8B
with 58Ni [16, 24], 12C [25] and 208Pb [26].

Due to the experimental difficulty to perform separate measurements of complete and
incomplete fusion cross sections, most of these studies have considered the effect of breakup
couplings on either elastic scattering or total fusion processes. However, recently measurements
of CF and ICF have been reported for some weakly bound nuclei with spherical and deformed
medium mass targets. For instance, 6Li with targets 90Zr [27], 144Sm and 152Sm [28, 29] and
also, the projectile 9Be with 181Ta [30], 169Tm and 187Re [31]. Similarly, theoretical studies
that account for the effect of breakup on complete fusion have been performed for a number of
systems, see Refs. [32, 33]. In a recent article [34], measurements of complete and incomplete
fusion cross sections for the weakly bound 6Li projectile with the highly deformed target 154Sm
at energies above the barrier are presented. Also, in this article, coupled-channel calculations are
used to study the effect on complete fusion due to couplings to inelastic excited states of 154Sm.
As expected, it was found that, this effect is increasingly important as the energy decreases
towards the barrier. A comparison of these results with those for the spherical 144Sm with the
same projectile 6Li was also discussed. In the present work, CDCC calculations for these systems
show that the effect of couplings to excited states of the spherical isotope 144Sm and the largely
deformed 154Sm produce an increasing total fusion enhancement as the collision energy decreases
below the barrier. As, it will be shown, this effect is more evident for 154Sm than for 144Sm.
So, couplings to inelastic excited states of the target produce attractive polarization potentials
that lower the fusion barrier. The strengths of these potentials increase for rotational deformed
states. It is interesting to point out that total fusion σTF being composed by CF and ICF, is
in principle unaffected by breakup Refs.[1, 35, 36, 37]. However, some enhancement has been
found at energies around and below the barrier for the projectiles 6Li, 7Li with targets 59Co and
209Bi [38]. In the calculations, we assume the cluster structure of 6Li→ α + d (Ethres = −1.47
MeV). Now, since the masses of the fragments α and d are not so different, their center of mass is
not strongly directed towards one of them. Therefore, total fusion can not be calculated by the
absorption of their center of mass as in other weakly bound nuclei. For instance, as in the case
of the projectile 11Be →10 Be+n for which, the absorption of the center of mass of 11Be ensures
the capture of the charged core 10Be[39]. To calculate total fusion, the approach given in Ref.
[38] is used. That is, two short-range imaginary potentials, inside the l = 0 nominal Coulomb
barrier, are used to account for absorption of both or any of the fragments α and d by the target.
So, complete and incomplete fusion are implicitly accounted for in this way. These imaginary
potentials depend on the relative distance between the fragments and the target. In a different
calculation, the effect of continuum resonance state couplings of the weakly bound nucleus 6Li
on total fusion is also studied. We follow a similar technique as in Refs. [40, 41], where the
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effect on elastic scattering from couplings to resonance continuum states of 6Li was determined
for reactions with targets 28Si, 58Ni and 144Sm. It was found that resonant states have some
important effect on elastic scattering at the lowest collision energies and for the lightest targets.
As a matter of fact, resonant state couplings produce a net repulsive polarization potential
that reduces incoming flux absorption. Following a similar technique, the effect of continuum
resonance states l = 2, jπ = 3+, 2+, 1+ of 6Li on total fusion is studied in this work. That is,
two approaches are used: i) Omit resonant states from the full discretized breakup space and ii)
Consider only the resonance states in the CDCC calculation of fusion, that is, all non-resonance
states are omitted.

In section II, a brief description of the CDCC model is given. Section III is dedicated to give
a detailed description of the construction of the CDCC discretized energy space for resonance
and non-resonance states. A full description and calculations of total fusion cross sections are
also given. The results of the effects on fusion from inelastic excited states of the target, as well
as, from resonance and non-resonance continuum breakup couplings of the projectile are given
as well. Finally, a summary and conclusions are presented in section IV.

2. Brief CDCC description
A complete description of the CDCC method is given in Refs.[9, 10, 11]. Here, only the basic
equations that are required to perform our calculations are presented. We consider the two-body
cluster structure of 6Li (α-d) with ground state energy Ethres = −1.47 MeV. The model space
for the ground and continuum states of 6Li is that given in Ref. [38]. The wave function for
breakup continuum states of 6Li reads as,

ψP
lj (r, k) = {Ylml

(r̂)⊗ χIµsσ}lj

ϕlsj(r, k)
r

, (1)

where the internal wave function of the α-d system is χIµsσ, with I = 0 and s = 1. ϕlsj(r, k)
describes the α-d relative radial motion with asymptotic wave-number k, orbital angular
momentum l and total angular momentum j.

The radial continuum states ϕlsj(r, k) in Eq. (1) are not square-integrable. However, Ref. [9]
provides a prescription for constructing square-integrable wave functions known as bin states.
A bin state u

(i)
β (r) is obtained by a superposition of scattering wave functions within a given

interval i, of continuum k values, ki−1 < k < ki, i.e.,

u
(i)
β=lsj(r) =

√
2

πηl

∫ ki

ki−1

wi(k, l)e−iδk(l)ϕlsj(r, k)dk, (2)

where δk(l) are scattering phase-shifts of ϕβ and wi(k, l) are weight functions defined by,

ηl =
∫ ki

ki−1

|wi(k, l)|2 dk. (3)

Actually, the weight functions wi associated to non-resonant bin states are usually set as
wi(k, l) = 1, while for resonant states wi(k, l) = sin[δk(l)].

The total wave function of the three-body system (α-d-target) is given by,

Ψ(R, r, ξ) =
∑
q

∑

β

Fβq(R)ψP
β (r)⊗ ΦT

q (ξ), (4)

where ΦT
q (ξ), q = 0, 1, 2, 3.. correspond to the ground and inelastic states of the target satisfying

HT ΦT
q (ξ) = εT

q ΦT
q (ξ). Fβq(R) represents the projectile-target relative motion in the βq-channel.
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Figure 1. Total fusion cross section for 6Li+144Sm with the full breakup space of 6Li (solid line),
without excited states of the target (dashed line) and without breakup states of the projectile
(dashed-dotted line).

Projecting the equation of motion of the system onto the projectile states β and onto the excited
states of the target q, the following coupled equations are obtained,

[
T̂R + U

(J)
βq,βq(R)− (E − εβ − εT

q )
]
F

(J)
βq (R) = −

∑

β′q′
U

(J)
βq,β′q′(R)F (J)

β′q′(R). (5)

Here, εβ is the excitation energy of the projectile in the β-state. U
(J)
βq,βq and U

(J)
βq,β′q′ are the

radial dependent diagonal and non-diagonal matrices of the interaction potentials V̂dT + V̂αT ,
where V̂dT and V̂αT are the nuclear interactions between the deuteron and α-particle with the
target. Notice that U

(J)
00,00 corresponds to the elastic incident channel. As a matter of fact, the

interaction potential matrices are given by,

U
(J)
βqβ′q′(R) =< uβΦT

q

∣∣∣V̂dT (rdT , ξ) + V̂αT (rαT , ξ)
∣∣∣ uβ′ΦT

q′ >, (6)

where rdT = R− 2
6r and rαT = R+ 4

6r represent the radial distance between the fragments and
the target. The integrations in Eq.(6) are carried out over the internal radial coordinate r, the
angular coordinates of R and the internal coordinates of the target ξ.
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Figure 2. Fusion enhancement and suppression factors from excited states of 144Sm (dashed
line) and from breakup states of 6Li (dashed-dotted line).

3. Calculations
3.1. Discretization of continuum space and interaction potentials
The ground state and discretized breakup states of 6Li→ d + α are constructed by using the
interaction given in Ref.[38]. The discretization of the continuum is made as follows. The
maximum angular momentum for the relative motion of the fragments is lmax = 3, larger values
do not have any effect on the calculated cross sections. So, bin states are constructed from an
initial energy ε0 = 0 MeV (above the threshold energy Ethres = −1.47 Mev) up to a maximum
energy εmax = 6.8 MeV. For states with l = 0, jπ = 1+ and l = 1, jπ = 0−, 1−, 2− an
energy step is fixed at ∆ε = 0.5 MeV. Finer and variable steps are used for resonant states
l = 2, jπ = 3+, 2+, 1+, so as to obtain centroid excitation energies and widths close to the
corresponding measured values [38]. For bin states l = 3, jπ = 4+, 3+, 2+, a larger step ∆ε = 1.0
MeV is used. Convergence tests at εmax = 7.0, 7.5 and 8.0 MeV were done with no effect on
fusion. Similarly, larger steps ∆ε = 0.75 and 1.0 MeV were used with no appreciable effect.
Coulomb and nuclear potential multipoles are included up to LQ = 4.

As for the nuclear interactions between the fragments α and d and the target of Eq.(6), we use
the same potentials as in our previous work for elastic scattering of 6Li+144Sm [41]. That is, the
systematic Woods-Saxon potential of Ref. [42] for V̂dT and the density dependent double-folding
Sao Paulo potential (SPP) for the V̂αT [43, 44]. These potentials have been modified to account
for vibrational and deformed effects of the excited states of the target. In the calculations, the
following excited states are included. For the spherical 144Sm, the 2+ (1160 keV) and 3− (1810
keV) with β2 = 0.087 and β3 = 0.15, while for the deformed 154Sm, the 2+ (82 keV) and 4+
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Figure 3. The same as Fig.1 but for 154Sm.

(267 keV) states, with deformation parameters β2 = 0.34 and β4 = 0.08 [45, 46, 47].
It is important to point out that, the inelastic excitations of the target might be very

important, specially in the case of the interaction with the strongly deformed 154Sm target.
Because of the limitations of the computational code that will be used to account for the
collective degrees of freedom of the targets, we adopted the following approximations. First,
we considered that the inelastic and breakup processes of the projectile can not occur at the
same time. Then, to calculate the coupling matrix elements UJ

β=0,β′=0(R), the single folding of
the sum of the interaction potentials over the projectile g.s. wave function (< u0|V̂dT +V̂αT |u0 >)
is calculated and expanded in multipoles, as in the usual coupled channel calculations.

3.2. Total fusion and effect of resonance and non-resonance states of 6Li
CDCC calculations of fusion between the 6Li projectile with targets 144Sm and 154Sm for incident
energies around and above the Coulomb barriers, are performed with the code FRESCO [48].
To calculate total fusion cross section σTF , two short range imaginary Woods-Saxon potentials
Wα−T and Wd−T are considered to account for absorption of the α-particle and deuteron by the
target. Wα−T depends on the radial distance between the α-particle and the target, while Wd−T

on the radial distance between the deuteron and the target. The parameters of these potentials
are fixed with strength W = 25 MeV, reduced radius r = 0.9 fm and diffuseness a = 0.1 fm
for both 144Sm and 154Sm. Absorption by these potentials happens inside the corresponding
Coulomb barriers VB,d = 13.92 MeV, RB,d = 6.4 fm and VB,α = 26.5 MeV, RB,α = 6.83 fm
respectively. So, the incident flux that passes above or through the barrier, that is inside the
short-range potential contributes to fusion. For the system 6Li+144Sm, Fig.1 shows the results
for σTF (solid-line), the calculation without couplings from excited states of the target (dashed-
line) and the calculation for the elastic channel, i.e., without couplings to continuum breakup
states of the projectile or excited states of the target (dashed-dotted line). These results show
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Figure 4. The same as Fig.2 but for 154Sm.

that the calculated total fusion is above the data for energies above the barrier, however there
is better agreement around and below the barrier. The total fusion data of Fig.1 are obtained
by the sum of complete and incomplete fusion data of Refs. [28, 29]. Fig.2 shows the numerical
effect EF on total fusion due to couplings from inelastic excited states of 144Sm (dashed-line)
and from continuum breakup states of 6Li (dashed-dotted-line), where the EF is defined by,

EF = 1− σF,n

σTF
, (7)

here, n = 1, 2 for inelastic and breakup couplings respectively. That is, σF,1 is the fusion cross
section when the inelastic states of the target are omitted, and σF,2 when breakup states of the
projectile and excited states of the target are not considered. It is observed that couplings to
inelastic excited states of 144Sm enhance fusion, particularly for energies below the Coulomb
barrier. Here, the enhancement factor EF reaches a value of about 38% at Ec.m. = 20 MeV.
On the other hand, the effect of couplings to breakup states of the projectile produces a net
fusion suppression for all energies. The strength of the suppression factor EF increases as the
collision energy decreases towards the barrier VB then to then decrease at lower energies. That
is, breakup state couplings produce a net repulsive potential that increases the fusion barrier and
therefore reduces fusion. Figs.3 and 4 show the corresponding results for 154Sm. The solid-line
of Fig.3 presents the total fusion calculation, while the circles represent the data of Ref. [34].
The dashed-line of Fig. 4 shows that the effect of the excited states of the deformed 154Sm is
stronger than for the spherical 144Sm at energies below the barrier. The enhancement factor
EF reaches a value of about 50% at Ec.m. = 22 MeV, while for 144Sm is about 30%. The
dashed-dotted line of Fig. 3, shows that breakup state couplings of the projectile are essential
to fit the data. This can be seen in Fig. 4, where is observed that these couplings produce a
net repulsive effect that rises the barrier. On the other hand, breakup state couplings are more
important for 154Sm than for 144Sm as shown by the dotted-dashed lines of Figs. 2 and 4.
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Figure 5. Effect of resonance breakup states of 6Li on total fusion with 144Sm target. The
solid-line represents the calculation with the full discretized breakup space. The dashed-line
shows the calculation with couplings among resonance states of 6Li, while the dashed-dotted
line for couplings among non-resonance states.

Figure 6. The same as Fig.5 but for 154Sm.
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Next, we present the calculations of the effect on total fusion from resonance breakup states
l = 2, jπ = 3+, 2+, 1+ of the weakly bound nucleus 6Li. The procedure is the same at that
used in Refs. [40, 41], where a study of the effect of these resonances on elastic scattering was
presented. Two different calculations are performed, namely, fusion is calculated when resonance
states are excluded from the full discretized energy space, then when only couplings between
the elastic channel and resonance state couplings are considered. The results are shown in Fig.5
for 144Sm and Fig.6 for 154Sm. The solid-lines represent the calculation with the full discretized
energy space, the dashed-lines corresponds to the case when only couplings between resonance
states are included, and the dashed-dotted lines when resonance states are omitted from the
full space. It is observed that, the effect of resonance couplings are more important for 144Sm
than for 154Sm. Also, fusion cross section with resonance and non-resonance sub-spaces are
higher than the calculation with the full discretized energy space for all the collision energies
considered. This implies that the net polarization potentials that appear from separate couplings
between resonance and non-resonance states are repulsive. These potentials suppress fusion at
all energies. Besides, it is seen that the suppression increases as the collision energy increases,
this is more evident for 144Sm than for 154Sm.

4. Summary and conclusions
CDCC calculations of total fusion cross sections have been presented for the nuclear systems 6Li
with targets 144Sm and 154Sm at energies around and above the Coulomb barrier. In the CDCC
calculations, resonance and non-resonance states of 6Li are discretized up to a maximum energy
of 6.8 MeV and discretization steps such that centroid energies of the resonances and widths
are close to the experimental values. To account for the effect of excited states of the targets
on fusion, low-lying excited states are included in the calculations. The cluster structure of the
projectile 6Li→ α + d is assumed, with global nuclear interactions for the α-target and d-target
sub-systems. For all of the energies studied in this work, it has been shown that calculations with
coupling to only the elastic channel are insufficient to fit the fusion data, so, couplings to breakup
states of 6Li are very important. On the other hand, the effect of inelastic states of the targets
produce attractive polarizations, that in turn, lower the fusion barrier and hence increase fusion.
This effect is larger for the deformed 154Sm than for the spherical 144Sm. Short-range imaginary
fusion potentials, inside the Coulomb barrier, have been used for the calculation of total fusion.
So, complete and incomplete fusion are accounted for, when both fragments are absorbed or only
one is captured. On the same footing, the effect on total fusion due to couplings from resonance
state couplings of 6Li, namely, l = 2, Jπ = 3+, 2+ and 1+ has been calculated. This effect has
been calculated by following two approaches, (a) by omitting the states corresponding to the
resonances from the whole energy discrete space and (b) by considering only resonance state
couplings. The effects of resonance and non-resonance couplings are stronger for 144Sm than for
154Sm. This is due to the nuclear potentials used for the interactions between the fragments
α and d with 144Sm, which are less attractive than those for 154Sm. So, since the Coulomb
interaction is the same for both targets, the effect of repulsive couplings from resonance and
non-resonance states is more apparent for 144Sm than for 154Sm.
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