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Abstract. A potential energy surface is constructed for 3,4He with the two-body Argonne V18 potential.
The minimization suggests a semi-rigid asymmetric top structure for 4He, where the appropriate point-
group symmetry is C2. We calculate the Hessian matrix, determining the 6 normal modes of vibration (in
the range 300-700 MeV). The breathing mode is found to lie at too high an energy to be observable and
the nature of the 0+

2 excited states of the alpha particle at 20 MeV should probably be sought elsewhere.
Similar investigations have been carried out for the A=3 system, finding a planar Cs configuration (scalene
triangle) and three excited vibrational states (in the range 600-1900 MeV).

1. Introduction
In this contribution, the application of methods and techniques of quantum chemistry and molecular
physics to the realm of nuclear physics is explored. This somewhat unconventional approach to nuclear
structure has a tradition that goes back to early works in nuclear theory, such as those of Wheeler [1],
Hafstad and Teller [2] and many others. Several studies on clusterization and exotic states of nuclear
systems have relied on the same approach, for example the works of von Oertzen and collaborators [3, 4]
where a Linear Combinations of Nucleonic Orbitals has been used, or works on the two center shell
model [5]. Most of these approaches are nicely reviewed in Ref. [6] where details can be found about
cluster models, Ikeda rules and several phenomenological approaches. Recently Bijker and Iachello have
developed an algebraic version of cluster models that incorporates point-group symmetries and gives very
interesting results on 12C and 16O [7, 8].

The common criticism to the application of molecular-type approaches to nuclei, revolves around
the different stiffness of the two systems: most molecules are rigid (although there are examples of
floppy molecules and of fluxional or super-rotor [9] molecules that baffle this traditional approach),
while nuclei are ’liquid’, in the sense that one expect large fluctuations inside the strongly interacting
system, that forbid ’rigid’ structures. Nevertheless, one normally adopts certain well-defined two-body
interaction potentials, derived from phase-shifts analysis, between constituents of the nucleus that are
deep enough to justify the calculation of a global potential energy surface (PES) built by using these
interactions between all pairs of nucleons. This can be minimized giving equilibrium configurations that
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have a precise geometric shape (or none). It is the equilibrium configurations, not the actual position
of the nucleons, that displays symmetry properties that should be reflected in the symmetry of the
wavefunctions and in the character of the vibrational states. We will analyze the cases of 4He and 3He
(3H is essentially equivalent), finding equilibrium shapes and their point-group symmetry and discussing
the consequences on the vibrational spectrum. The energies of these modes will be found by applying
the normal modes analysis (Hessian matrix) for the sake of simplicity, even though this is not the ideal
approach because, despite the depths of the potential well being of the order of hundreds of MeV, the
bound states are only a few MeV from the separation threshold, therefore they cannot be seen as deep
lying states. It is instructive anyway to look at the results.

2. PES equilibrium configuration of 4He
Let’s consider the potential energy surface obtained by using the Argonne V18 potential between all the
constituents of the α particle:

PES(~r1, ~r2, ~r3, ~r4) =
4∑

i<j

Vij(| ~ri − ~rj |) (1)

where the vector coordinates ~ri are not all independent in center of mass or intrinsic system, but they are
constrained as follows:

4∑
mi~ri = 0 (2)

Of course the specific potentials are different for each type of interaction, i.e. they depend on the spin-
isospin of each pair ij and on the orbital angular momentum. If we set 1 as the proton spin up, 2 as the
proton spin down, 3 as the neutron spin up and 4 as the neutron spin down, the possible potential terms
are listed in Table 1:

spins terms
1 2 p↑ p↓ 1ST=1

0 , 3P T=1
J , 1DT=1

2 , · · ·
1 3 p↑ n↑ 3ST=0

1 , 3P T=1
J , 3DT=0

J , · · ·
1 4 p↑ n↓ 1ST=1

0 , 1P T=0
0 , 1DT=1

2 , · · ·
3ST=0

1 , 3P T=1
J , 3DT=0

J , · · ·
2 3 p↓ n↑ as in 1 4
2 4 p↓ n↓ as in 1 3
3 4 n↑ n↓ as in 1 2

Table 1. List of possible potential terms for each pair. Notice that the antisymmetry of the total
wavefunction limits the possible combinations. The index J stands for all possible vector couplings
between S and L.

The static picture that we adopt is that of looking for the minima of the potential energy surface with
the combinations of potentials that minimize the energy. These are to be intended merely as equilibrium
configurations for the nucleons, that nevertheless possess high momenta and have large fluctuations
around these minima (as large as the nucleus itself). The dynamical picture instead is that of nucleons
that are continuously scattered inside the α particle, and the scattering is described by the appropriate
potential term. One might wonder if the PES corresponding to the lowest potentials (S-waves) ever cross
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Figure 1. Equilibrium positions of protons (blue) and neutrons (green) in the α particle. Notice that the
bond connecting 3 and 4, while perpendicular to the z-axis, is tilted 5o87 away from the y-axis. This
implies that the point-group symmetry is simply C2.

(or has conical intersections) with higher order terms and this might lead to reaction paths, i.e. to loci
of the potential energy surface that might allow a transition (chemists would call it isomerization) from
a given geometric configuration (local minimum) to a different one (another local minimum) given a
sufficient activation energy.

Let’s use for the moment only the deepest possible S-wave potentials, i.e. those corresponding to the
first configuration given in Tab. 1 for each pair. For the sake of simplicity I do not consider the 3ST=0

1

configuration for the 1-4 and 2-3 pairs, because the depth of this potential is about one half of the 1ST=1
0

one, therefore it does not affect the following search for the absolute minimum. Similarly, potentials
with higher values of L have shallower pockets and can be disregarded for the present search. The PES
depends in general on 4 vector positions, that correspond to 12 variables. A brute force minimization of
Eq. (1) with constraints given by Eq. (2), gives an absolute minimum at -557.531 MeV. This minimum
is spatially quite stiff with respect to small changes in each of the 12 variables and very easy to locate.
It gives a somewhat simple geometric structure. A closer scrutiny of the coordinates that minimize the
PES function reveals that a few simple rigid rotations can be made without altering this structure, nor
the energy of the minimum. The following list of constraints can be imposed on minimization without
loosing the minimum:

x1 = −x2 x3 = −x4

y1 = −y2 y3 = −y4

z1 = z2 z3 = z4

The resulting geometric structure is depicted in Fig. 1: the equilibrium points of the two protons are
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contained in the xz plane and are parallel to the x axis, while those of the two neutrons lie in a line
perpendicular to the z axis, but tilted 5.87o away from the yz plane. The coordinates of the equilibrium
points are:

x1 = −0.437648 fm y1 = 0 fm z1 = −0.31883 fm
x3 = 0.0446687 fm y3 = −0.43476 fm z3 = 0.318391 fm

Note that one can be chosen to be zero without altering the minimization, in the c.m. frame it
corresponds to rotate the whole system until the line connecting two particles lies in the y = 0 plane.

This shape is not a tetrahedron (it cannot be, the two protons repel each other more than the neutrons
even neglecting spin), therefore Td is excluded. If the inter-neutron bond would have been parallel to
the y-axis a C2v symmetry would have resulted, but this is not the case and the only possible symmetry
operations are identity and a 180o rotation around the z-axis, therefore the point-group symmetry is
simply C2. The representations of this groups are very simple: A and B have positive and negative
character with respect to the C2 rotation. As far as we know, the only hint to non-tetrahedral shape of
4He, was obtained in calculation of photonuclear sum rules using AV18 +UIX (notice that we don’t have
three-body potentials here) [10]. The authors conclude that helium-4 should look like a slightly deformed
tetrahedron exactly as we find directly from the minimization.

1st Claim: the geometric shape of equilibrium positions of the nucleons composing the α
particle, obtained by minimizing the the Potential Energy Surface (1) with the two-body AV18
potentials, is that of an asymmetric top with C2 symmetry.

3. Vibrational spectrum in the harmonic approximation
We can perform a normal mode analysis in order to see the symmetry-type and energy of the fundamental
vibrations. Even if the potentials are quite stiff, all of the following analysis is most certainly just an
academic exercise that little has to do with reality: in fact, while in molecules masses distances and
interactions often allow for the presence of tens of excited vibrational states, the nucleons in the α
particle have such a different relationship between masses, distances and interactions that the energy of
excited vibrational bands lies outside of the potential well. It is instructive anyway to take a look at
this approach. If the potential energy is expanded in a Taylor series around the minimum, the first order
derivatives vanish at the minimum and the mass-weighted Hessian matrix can be computed as

H̃lk = Hlk/
√

mlmk = (∂2PES/∂ql∂qk)/
√

mlmk (3)

From group theory, after subtraction of translations and rotations, one should expect 3N − 6 normal
modes, all non-degenerate: Γ3N−Γrot−Γtra = 4A⊕2B. Of these, 4 are symmetric and 2 antisymmetric.
We have obtained the explicit expressions for the displacements (eigenvectors of the Hessian) and
energies (linked to the eigenvalues of the Hessian). The fundamental vibrations are all at very high
energies, namely A 689.056 MeV, B 526.534 MeV, A 525.475 MeV, B 392.526 MeV, A 388.906 MeV,
A 285.293 MeV, possibly too high to ever be observed as they are an order of magnitude higher than the
various particle emission thresholds. They are depicted in Fig. 2. The first and higher in energy is the
symmetric breathing mode. This is a very important result because in Ref. [11] the relevant and poignant
question was asked whether the first excited 0+

2 state of the alpha particle, lying at about 20 MeV might
be interpreted as a breathing mode. Our analysis seems to exclude such a possibility, but it should be
noted that a proper full calculation of the vibrational energy should be attempted before one can answer
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Figure 2. Normal modes of vibration of the C2 configuration of the α particle.

this question with confidence. The two B modes at 526 and 392 MeV are both pn asymmetric stretches
(one pn bond gets smaller, while the other gets stretched) that mix and repel, the A mode at 525 MeV is
a pp asymmetric stretch (the pp bond gets smaller, while the other gets stretched and viceversa) and the
two lowest A modes at 389 and 285 MeV are torsions that lift and simultaneously rotate the two neutrons
away from the protons. The six sets of 4 displacement vectors form a system of normal coordinates, that
could be taken as a symmetry-adapted basis for further calculations.

2st Claim: the fundamental vibrations of the C2 configuration of the α particle, in the normal
mode approximation, are too high in energy to be observed. Accordingly, the first excited 0+

2

state at 20 MeV is probably not the breathing mode of this structure.

4. 3He - Cs symmetry
Let’s apply the same methods to helium-3. Analogous results can be obtained for the mirror system 3H,
that will not be reported here. The neutron and the two protons in the nucleus 3He can be represented
with three coordinates and three spin vectors: the two protons spin-up and down are assigned to 1 and 2
and the neutron (spin up or down is irrelevant) to 3. Thus the total PES can be written as:

PES(~r1, ~r2, ~r3) =
3∑

i<j

Vij(| ~ri − ~rj |) (4)
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Figure 3. Equilibrium positions of 2 protons (blue) and a neutron (green) in 3He. The point-group
symmetry is simply Cs. Notice that the bond connecting 1 and 2 is not quite parallel to the y-axis, but
tilted 3.31o away from it.

The equilibrium configuration can be found by minimizing the above PES with the center of mass
constraint, i.e.

3∑
mi~ri = 0 . (5)

The result of the minimization, with the minimum lying at -277.67 MeV, is not affected if we set some
additional geometrical constraints, for example that all the three particles are in the z = 0 plane and that
the neutron lies on the x-axis, namely :

y1 = −y2

z1 = z2 =z3 = 0

The resulting geometric structure is depicted in Fig. 3: the triangle is not equilateral, as one could
have expected from the fact that one of the particle is different from the other two, but surprisingly is not
even isosceles, all sides are dissimilar. This is due to the fact that the interactions of the n with the p’s is
slightly different depending on the relative spin orientations. The coordinates of the equilibrium points
are:

x1 = 0.283102 fm y1 = 0.436916 fm z1 = 0. fm
x2 = 0.232502 fm y2 = −0.436916 fm z2 = 0. fm
x3 = −0.514895 fm y3 = 0. fm z3 = 0. fm

The point-group symmetry is just Cs, i.e. the group of identity and reflection upon the horizontal
plane, with the possible representations A′ and A′′ that differ because of the sign under reflection.
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Figure 4. Normal modes of vibration of the C2 configuration of the 3He nucleus. Notice that all
displacement vectors have unequal lengths and that their orientations are not interchangeable by any
rotation.

The group theoretical analysis of the normal modes after subtraction of translations and rotations, gives
3N − 6 normal modes: Γ3N − Γrot − Γtra = 3A′, all symmetric, therefore all preserving the overall
scalene shape.

3rd Claim: the geometric shape of equilibrium positions of the nucleons composing 3He,
obtained by minimizing the the Potential Energy Surface (4) with the two-body AV18
potentials, is that of a scalene triangle with Cs symmetry.

The energies of the fundamental vibrations obtained from diagonalization of the Hessian matrix are:
642.033, 1081.92 and 1856.07 MeV. The three sets of displacement vectors shown in Fig. 4 indicate that
the lowest vibration is a sort of bending mode, the intermediate one is a sort of stretching mode and the
higher one is a sort of breathing mode. We have slavishly repeated the words ’sort of’ to underline that, in
general, all nucleons have displacements of different lengths, for example the two protons in the breathing
mode don’t move in the same way or to the same extent. The above energies of the excited vibrational
states are very high for low-energy nuclear structure, far beyond proton or neutron separation threshold
and pion production threshold. Probably one could wonder if the harmonic approximation makes any
sense, but I expect that the normal modes analysis gives results that are at least of the same order of
magnitude as the full ab initio calculation of eigen-energies. These states could exist as resonances, but
their width would be extremely large and therefore I do not expect that they could ever be observed in
scattering or photoabsorption experiments.

5. Conclusions
The exact ab initio calculations of the vibrational energies would be a major step forward in this approach,
because it might tell (by exclusion for instance) if any of the observed excited states of the α particle
has anything to do with a breathing mode. Extensions of the present approach to heavier systems are
in principle not difficult, provided that one considers also higher order interaction terms that go beyond
L = 0. It would be very nice to explore if the PES with at least one D interaction term give energy
differences with the ground state PES that are in the range of 20 MeV and if there is any conical
intersection, i.e. if two different geometrical equilibrium shapes have PES that touch or cross each
other (they have a locus of degenerate energies) where interesting phenomena might appear.
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