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Abstract. State estimation theory is widely used for telemetry verification. Similar approaches 

can successfully be applied to electric energy measurements. Testing equations method was 

proposed in the frameworks of the state estimation theory and adopted for bad energy 

measurements detection. It is proposed to employ the modified testing equations method for 

detecting the systematic measurements errors of automatic electrical energy meter reading 

complexes. It is shown and confirmed that provided the statistical sample it is possible to 

detect and evaluate the systematic error, which, in turn, allows taking this error into account 

and adjusting the measurements results. 

1. Introduction. Problem relevance 

Economic efficiency is currently given the most attention in almost every industry field, and power 

engineering is not an exception. Scope of responsibility of grid companies includes electrical energy 

transportation from generation facilities to consumers. Hence, their main source of income is the fee 

received for energy transport. Electrical energy measurements obtained by means of energy metering 

systems constitute the basis of financial relations between the parties within wholesale and retail 

electricity markets.  

Actual measurements sources are energy metering complexes installed at the borders of 

responsibility areas of various energy exchange participants. Due to electrical energy tariffs (i.e. prices 

for consumers) differentiation on an hourly basis, the automatic meter reading (AMR) systems are 

being widely deployed, expanded and advanced at a fast pace. AMR systems are intended to timely 

provide reliable electrical energy measurements data in order to properly establish the financial 

settlements between the energy exchange parties. 

However, electrical energy measurements, besides typical errors, may contain bad data resulting 

from significant metering devices measurement errors, exceeding the admissible rates, as well as 

measurements data transformation distortions or communication channels noise and disturbances [1]. 

Energy flows measurements validity and accuracy monitoring is of paramount importance for any 

AMR system operation, which allows minimizing the financial risks for energy exchange participants 

in case of bad data occurrence within commercial measurements. 
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As a matter of fact, electrical energy measurements do not reflect the true energy flow value 

corresponding to the metering complex installation point. Energy measurement, similar to any other 

one, can be generally represented by the sum of three quantities: true energy flow value 
true

iW , which 

is actually unknown, and two measurement error components – systematic W i  and random Wi  

errors: 

 WiWi
true

i
meas

i WW   .    (1) 

Since the true energy flow value is unknown, its statistical parameters are, consequently, unknown, 

as well. Hence, it is of particular interest to estimate all values appearing in the expression (1) in order 

to improve measurements data reliability. 

It is common knowledge that the closer the measured value is to the true one – the higher is the 

measurement accuracy. For this requirement to be met it is necessary that the metering complex 

measurement error would not exceed the sum of systematic and random errors, which constitutes the 

criterion of electrical energy measurement validity. 

As the statistical properties of measurement errors are unknown, the concept of maximum 

admissible relative measurement error of electrical energy metering complex was introduced in 

metrology practice. This figure corresponds to the limits of the measured parameter valid values range. 

The probability of the measurement value to fall within this range is 95 %. 

2. Systematic errors detection and measurements results adjustment 

In power engineering the state estimation theory is widely applied for the purposes of detecting bad 

data, evaluating errors as well as solving various other problems regarding measurements data 

verification [2–8]. 

Metrological techniques of detecting the excessive measurement errors of electrical energy 

metering complexes are quite difficult to implement on a practical level, especially when dealing with 

high-voltage installations. Therefore, applying the mathematical approach in order to detect the 

metering complexes, the measurement error of which exceeds the regulatory-specified limits, is 

prospective and promising [9]. 

Modern electrical energy metering systems provide sufficient measurement redundancy. State 

estimation theory application allows to choose the optimal allocation of AMR-complexes to provide 

observability and sufficient redundancy level [10]. Figure 1 show the most common metering system 

structure from 110 kV busbar downwards. 

Level I of the test subnetwork metering system shown in figure 1 is the 110 kV busbar input – 

110 kV lead-in. Level II comprises the 6/10 kV busbars input – 6/10 kV lead-in. Level III features 

6/10 kV busbars feeders output. Level IV is formed by the total lower-level substations input, 

corresponding to each 6/10 kV busbar feeder. Level V incorporates the equivalent lower-level 

substations feeders output. 

Measurements redundancy offers the possibility to derive a single energy flow based on different 

measurements sets, which enables obtaining several calculated estimated equivalents corresponding to 

each actual measurement expressed as a linear aggregate of other measurements [11]. 

One of numerous possible approaches to the construction of estimated equivalents expressions is 

the topological method. 

The first stage is selecting the measurement, for which the estimated equivalents will be obtained; 

13W  is taken by way of example for the following examination. Then topology-based balance edges 

are formed in such a way that the desired energy flow could be derived from them. Figure 2 illustrates 

a series of balance edges plotted by dash lines. Technical losses of electrical energy values 

corresponding to the network elements crossed by an edge are added to the calculated estimate 

expression. Herein, the losses calculation method is not strictly determined and the selection of one is 

defined by a set of initial data available. The most commonly used method is the technical losses 

calculation based on the considered period average power. 



3

1234567890

2nd International Conference on Measurement Instrumentation and Electronics IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 870 (2017) 012015  doi :10.1088/1742-6596/870/1/012015

 

 

 

 

 

 

 

 

 

Figure 1. AMR system structure diagram  Figure 2. Balance edges corresponding to 

measurement 13. 

The algebraic approach to the construction of similar expressions, worth noting as a more 

formalized one, was described in detail in [11–12]. 

State estimation theory is widely used to solve wide variety of electric power industry problems 

[13-14]. 

Several estimated equivalents are attributable to a single measured energy flow value 13W  with the 

exact number being established on the basis of available redundancy level [11]. At that, the accuracy 

of the measurement itself accords with its metering complex accuracy rating. 

After that the measurement calculated estimate is obtained from numerous estimated equivalents. 

First, the relative accuracy of iW  energy flow estimated equivalents, derived from testing equations, is 

to be defined. 

The relative accuracy of each verifying equation is calculated according to 

 



n

j

WjW ji
a

1

22  ,    (2) 

where 
iW  is the i  metering compex accuracy rating. 

The calculated estimate of energy flow value is the following: 
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Hence, the measured energy flows values 
meas

iW  are used as the initial data for the purpose of 

calculating their estimated equivalents 
est

iW . 

Deriving the measurement estimated equivalent based on the verifying equations system also 

allows to define the measurements errors corresponding to each time period under consideration. 
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The higher is the metering complexes accuracy – the less the difference W  between the measured 
meas

iW  and the estimated 
est

iW  energy flow values is to be. Therefore, the effective metering complex 

measurement error might be evaluated based on the relative estimation residual value 

%100







 meas

i

iest

W

W
r . The the criterion of measurement validity is the expression 

 
i

est

ir lim ,    (4) 

where 
ilim  is the maximum admissible measurement error of metering complex i . 

Previous work [11] propose to apply the modified testing equations method for demanding energy 

measurements verification. Modern AMR-systems have quite voluminous archives of the measured 

electric energy on the specific time intervals to provide a sufficient statistical sample. 

It is possible to accumulate the statistical parameters of every metering complex estimated errors as 

far as multiple time periods are available for analysis. The subsequent statistics processing is 

performed in order to detect and evaluate the systematic error of every single metering complex. The 

metering compelex systematic measurement error is determined by the estimation residuals series 

expected value. 

Hence, the metering complex proper functioning criterion is the following inequation: 

 
i

est

ir lim ,    (5) 

where est

ir  is the relative estimation residuals series expected value corresponding to the iW  

measurement; 
ilim  is the maximum admissible measurement error of metering complex i . 

3. Case study. Method validation based on the test network 

The equivalent circuit was formed for the test subnetwork and two sets of operation conditions 

different in terms of consumers load values were defined and computed by means of the specialized 

software package. 

All metering complexes accuracy ratings were calculated under the assumption of their compliance 

with RD 34.09.101-94 requirements [13]: 

 22221.1 lmUIW   ,     (6) 

where I  and U  are the measurement errors of, correspondingly, voltage and current instrument 

transformers (GOST 7746-2001 and GOST 1983-2001), %; m  is the meter basic relative 

measurement error, %; l  is the error driven by the voltage loss on a connection line between the 

meter and the voltage instrument transformer, %. 

The first three components in the metering complex maximum admissible error expression (6) were 

assumed to equal 0.5, and the voltage loss value of 0.25 % was adopted, which correspond to the 

accuracy ratings of the most common commercial metering complexes components in operation. The 

resulting maximum admissible relative error follows from here to be [16] 

134.125.05.05.05.01.1 2222 W . 

The method was validated on the basis of the 24-hour time period, of which the two sets operation 

conditions were simulated during 12 hours each. 

The estimation expressions system involves the electrical energy losses corresponding to the test 

subnetwork equivalent circuit components. It is proposed to calculate the losses based on the mean 

power value during the analyzed time period. Table 1 shows the comparison of the accurate losses, 

defined as the difference between the simulated energy flow values at the beginning and at the end of 

the transmission lines, and the losses calculated based on the mean power value, with the power flows 

being impacted by simulated measurement errors within the rated accuracy range and mean voltage 

values and equivalent circuit parameters being used. 
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Table 1. Energy losses values comparison. 

Nbeginning Nend Accurate losses Losses based on mean power value Relative error, % 

1 2 0.01 0.01 -3.84 

1 3 0.00 0.00 13.72 

3 4 0.04 0.03 -16.26 

3 5 0.19 0.15 -17.65 

3 6 0.03 0.02 -31.12 

3 7 0.10 0.10 -0.47 

4 8 0.00 0.00 0.00 

5 9 0.00 0.00 0.00 

6 10 0.00 0.00 0.00 

7 11 0.00 0.00 0.00 

700 30-minute simulations were performed for the purpose of testing the systematic error detection 

method. 

In practice it is rather difficult to accurately calculate the technical losses value for a time period due 

to the following reason. Technical losses comprise two components: load-based and semi-constant. 

The primary uncertainty source is the calculation of corona losses, which are heavily dependent upon 

environment conditions – temperature and humidity.  

Moreover, in case the load-related losses calculation is based on the element resistance, its value is not 

exactly known as well. Under typical operation conditions the losses level commonly amounts for  

 

Table 2. Verifying equations calculation results and their errors. 

Verifying equation number Estimate Error, kW·h Error, % 

1 3.384 0.038 1.134 

2 3.323 0.038 1.134 

3 3.398 0.045 1.322 

4 3.443 0.452 13.134 

5 3.362 0.479 14.244 

6 3.435 0.457 13.298 

7 3.507 0.465 13.264 

8 3.354 0.484 14.414 

9 3.499 0.470 13.424 

10 3.426 0.492 14.355 

11 3.418 0.496 14.522 

12 2.432 1.213 49.868 

13 2.351 1.239 52.715 

14 2.424 1.217 50.219 

15 2.496 1.226 49.110 

16 2.343 1.239 52.896 

17 2.488 1.230 49.449 

18 2.415 1.252 51.856 

19 2.407 1.257 52.216 
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1–5 % relative to the element flow, hence the maximum losses calculation error is considerably lower 

than the metering complex maximum admissible error. 

The losses calculation error of 20 % is adopted for the test case. The calculation is done based on 

the accurate losses value at the first stage. 

19 verifying equations were constructed for 13W  measurement using the algorithm described in [10] 

with the error in kW·h and on a percentage base being defined. The resulting values are listed in 

table 2. 

The calculated estimate of the energy flow value is obtained using (3): 363.313 W . The energy 

flow estimated eqivalent maximum admissible error in the considered exmple is %67.0est , which is 

almost half as large as the metering complex measurement error. The actual relative difference 

between the estimate and the true values equals 0.10 % while the difference between the measured and 

the true values reaches 0.70 %. 

The similar approach applied to the losses based on the mean power value revealed the 

insignificance of the losses calculation method for the final outcome. 

The same calculations were performed for 700 half-hour periods. The systematic of error of 13 % 

was intentionally included into the measurements series. Part of the results are shown for illustrative 

purposes in table 3. 

The average estimation residuals obtained for all considered periods equals 11.5 %, which is close 

to the predefined systematic error. 

The estimation residuals series expected value is the evaluation of the metering complex 

measurement error constant component. Therefore, the described methodology provides the possibility 

to adjust every metering complex measurements without expensive and time-consumig metrological 

calibration procedures. Furthermore, this method enables detecting the metering complexes requiring 

the exceptional calibration, which makes it unnecessary to calibrtate all metering complexes. 

However, it is impossible to adjust the commercial electrical energy maesurements by means of 

introducing the correction indexes due to the lack of legal framework, i.e. the regulations in this field. 

The accumulated statistics and estimated equivalents calculations based on the verifying equations 

method allows to evaluate the systematic error of any single metering complex. This results in 

potential decrease of regular calibration costs by means of detecting the metering complexes, 

characterized by measurement errors exceeding the admissible value. 

The statistical sample sufficiency is determined by the measurement interval length. In modern 

AMR-systems carrying out such calculations in online mode together with the previous results will 

allow monitoring the current state of the concrete AMR-complex. 

The method allow to optimize the list of current metrological verification. 

4. Conclusion 

Methods of measurements verification based on the testing equations system showed good 

performance considering the test subnetwork. The testing equations method enables detecting the 

measurements containing bad data. 

Verifying equations might be constructed on the basis of the testing equations system for the 

critically important commercial electrical energy measurements. Utilizing the verifying equations 

method allows to verify the key measurements in order to reduce the grid companies financial risks. 

Table 3. Verifying equations calculation results and their errors. 

Parameter Period 1 Period 2 Period 3 Period 4 ….. Period 700 

meas
W13 , kW·h 0.113339 0.113565 0.113452 0.111870  0.044974 

meas , % 1.13 1.13 1.13 1.13  1.13 

totalest
W

_

13 , kW·h 0.099353 0.100785 0.098752 0.099769  0.039740 

estr , % 12.3 11.3 13.0 10.8  11.2 
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Systematic error evaluation gives the opportunity of adjusting the metering system measurement 

data. 
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