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Abstract. Most Active galactic nuclei (AGNs) are obscured by large column densities of cold 
and neutral gas. If the X-ray obscuring matter has a column density equal to or larger than the 
inverse of the Thomson cross-section (NH ≥ σT ≈ 1.5×1024 cm-2), then the source is identified as 
a Compton-thick AGN. One of the characteristics of Compton-thick AGN is the presence of Fe 
Kα emission line in their spectra with a large equivalent width. Using this criterion with XMM-
Newton observations we identified Compton-thick AGNs by following a selection method, the 
FLEX algorithm, developed by Maccacaro et al [1] to search for X-ray line emitting objects 
(XLEOs). This technique detects the sources having significant excess of photons resulting from 
the iron emission line. Here we present the results from applying this method on the 28 highly 
absorbed AGNs recently detected by Corral et al [2]. Of these 28 AGN, 15 are candidate 
Compton-thick AGN. We applied the detection algorithm on a pilot sample of 40 XMM-Newton 
observations. Our results confirm the Compton-thick nature of 14 of Compton-thick AGN, based 
on the observed properties of the Fe Kα emission line. We use the characteristics of the observed 
lines to diagnose the AGNs and their environments. 

1.  Introduction 
Compton-thick active galactic nuclei (AGNs) are obscured by large absorbed column density (NH ≥ 
1.5×1024 cm-2). According to the standard unification model, in Seyfert 2 galaxies the powerful engine 
is obscured by a molecular torus surrounding the accretion disc [3]. Detection of Compton-thick sources 
can be probed by the presence of a strong iron Kα line complex at 6.4-7 keV and Compton reflection 
component. At these high column densities, the iron line equivalent width (EW) reaches values of order 
1 keV and in case of high inclination angles and small torus opening angles it increases for several keV. 
A smaller opening angle means the torus obscures a larger solid angle around the nucleus, and hence 
more Fe K-edge photons are captured and generate Kα photons. High inclination angle closer to the 
equatorial plane see larger EWs in the Kα line because the continuum is most severely attenuated along 
that direction. Large optical depth promotes Kα production by absorbing more hard X-rays: the 
continuum at Kα is suppressed, while photons well above the Fe K-edge are absorbed and trigger 
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fluorescence but for optical depth more than ≈ 4 the EW decreases because the optical depth from the 
points of Kα production to the surface is too large for the fluorescence photons to escape [4].  

A recent selection technique to search for highly obscured AGNs was discussed by Corral et al [2]. 
They applied automated X-ray spectral fits implemented for the XMM-Newton spectral fit database and 
the selection of highly obscured candidates was based on the presence of either (a) flat rest-frame spectra 
from a simple power-law fit; (b) flat observed spectra from an absorbed power-law fit; (c) an absorption 
turnover, indicative of a high rest-frame column density; or (d) the presence of an Fe Kα line with a 
large equivalent width (EW >500 eV). More detailed manual spectral fits result in a detection of 28 
heavily obscured with column density higher than 1023 cm-2. A novel search method FLEX (Finder for 
Line Emitting X-ray sources) to search for X-ray line emitting objects (XLEOs) in XMM-Newton 
observations has been developed by Maccacaro et al [1]. They detected three sources, most likely highly 
absorbed AGNs (NH >1024 cm-2) in a test-run analysis of 13 XMM-Newton observations. The idea is 
based on the extension to the energy axis of the usual source detection techniques and a search for a 
significant excess is performed along the energy axis. Here, we apply this selection method technique 
on the 28 highly absorbed AGNs detected by [2] to test the reliability of this selection technique.              

2.  Data reduction and detection method 
The sample is composed of 40 observations from XMM-Newton serendipitous source catalog (3XMM-
DR4) corresponding to 28 sources, which were detected as heavily absorbed sources by Corral et al [2]. 
We reduced the EPIC-PN data using SAS v15.0.0. Data were first processed through the pipeline chains, 
and then filtered. Events with flag=0 and pattern between 0 and 4 were used. The selected energy range 
(2.3-6.4 keV) includes all sources with redshift interval 0-1.8. For each of the 41 observations, PN 
images are created in 23 energy bands in the energy range (2.1-6.7 keV), we increase one bin on each 
side, each band in 200 eV. For one source, 3XMM141546.2+112943, we extended the lower energy 
limit to be (1.7-6.4 keV) due to its high redshift (z = 2.56). Then we applied the detection meta-task 
edetect chain for all 23 energy bands. The three-dimensional detection cell has a box size 5×5 pixels 
and energy size 200 eV. We rejected the energy bands of sources with detection likelihood smaller than 
11.5 (corresponding to probability greater than ~10-5). We find 38 observations out of 41, corresponding 
to 27 sources, having excess source counts with a probability of being fluctuation of the estimated 
background level smaller than ~ 10-5.                         

3.  Spectral analysis and results 
In order to distinguish Compton-thick from other AGN types that exhibit the iron emission line we have 
to differentiate the excess counts of iron line from the continuum counts in the energy bands where 
excess is detected with a probability of being a random noise fluctuation less than ~ 10-5. To do this, we 
applied the following method. Only EPIC-PN data is used. For each observation, we extracted the source 
and background spectrum from a circular region with the same area. Source spectra were checked for 
pile-up. All spectra were binned to 1 counts bin-1 and Cash-statistics [5] was used for modeling the 
spectra in XSPEC v12.9.0. A simple model composed of absorbed power-law plus a Gaussian emission 
line whose energy is fixed to 6.4 keV rest-frame and width to 0.1 keV [zwabs*(pow+zgau) in XSPEC] 
were applied to the spectra in the energy range 2.0 - 10.0 keV. We determined the flux from both the 
best-fit model and the model with line normalization set to zero in each detected energy band for the 38 
observations. We then estimated the continuum counts from the ratio of both fluxes and the source 
counts from edetect_chain.  

The results are listed in table 1. For each source, the energy range with the most excess from the Kα 
iron line and the fraction of this excess with respect to the source counts are shown in table 1. Three 
sources are discarded since we did not detect any excess from the line. In type2 AGN the torus  
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Table 1. Detected sources 
Source Name Energy 

band 
(keV) 

Source 
counts 

Line 
(%) 

EW 
(keV) 

Classification A. Corral 
Classification 

3XMMJ080741.0+390015(a) 6.1-6.3 10.5 77.7 0.927ି଴.଺ଷ
ା଴.଻଺ CT CT 

3XMMJ215649.5-074531(b) 5.9-6.1 11.2 61.6 0.316ି଴.ଷଶ
ା଴.଼ସ CT candidate CT 

3XMMJ093551.5+612111(b) 6.1-6.3 33.5 67.4 0.907ି଴.ସ଻
ା଴.଺ଷ CT CT 

3XMMJ093952.7+355358(b) 5.5-5.7 44.2 62.8 0.862ି଴.଼଺
ା଴.଻ଷ CT CT 

3XMMJ103408.5+600152(b) 5.9-6.1 17.7 90.8 1.647ିଵ.଺ହ
଴.ହ଺  CT CT 

3XMMJ113549.0+565708(a) 6.1-6.3 8.15 55.8 0.119ି଴.ଵଶ
ାଵ.଴଺ CT candidate CT 

3XMMJ115704.8+524903(a) 6.1-6.3 29 85.6 1.445ି଴.଼ଷ
ାଶ.ଵଽ CT CT 

3XMMJ121839.4+470626(b) 5.7-5.9 11 74.3 0.349ି଴.ଷହ
ା଴.ଽଶ CT candidate CT 

3XMMJ122546.7+123943 
OBID 0110930301(a) 
OBID 0110930701(b) 
OBID 0675140101(a) 

 
6.3-6.5 
6.3-6.5 
6.3-6.5 

 
193.5 
748 
3234 

 
61.3 
51.4 
25.3 

 
0.538ି଴.ଵଶ

ା଴.ଵହ 
0.229ି଴.଴଺

ା଴.଴଼ 
0.083േ0.01 

 
- 
- 
- 

 
CT 
- 
- 

3XMMJ131104.6+272806(b) 5.1-5.3 9.26 90.5 1.937ିଵ.ଷହ
ାଵ.ଽହ CT CT 

3XMMJ140700.3+282714(b) 5.9-6.1 24.7 75.8 1.100ି଴.ହ଼
ା଴.଺ଽ CT CT 

3XMMJ141546.2+112943 
OBID 0112250301(b) 
OBID 0112251301(b) 

 
1.7-1.9 
1.7-1.9 

 
15 

21.5 

 
21 

54.4 

 
0.018ି଴.଴ଶ

ାଵ.଻଺ 
0.239േ0.25 

 
CT candidate 

- 

 
CT 
CT 

3XMMJ150754.3+010817(a) 5.9-6.1 17.4 81.4 1.095ି଴.଼ଵ
ାଵ.ଽସ CT CT 

3XMMJ153457.2+233011 
OBID 0101640901(b) 
OBID 0205510401(b) 

 
6.3-6.5 
6.3-6.5 

 
6 

13.1 

 
54.8 
77.1 

 
0.135ି଴.ଵଷ

ାହ.ଽଽ  
3.662ିଷ.଺଺

ା଻.଺଴

 
CT candidate 

CT 

 
CT 
CT 

3XMMJ082443.2+295923(a) 6.1-6.3 109.6 61.8 0.272ି଴.ଵଵ
ା଴.ଵସ - - 

3XMMJ083139.0+524205 
OBID 0092800201(a) 
OBID 0502220201(a) 
OBID 0502220301(a) 

 
5.9-6.1 
5.9-6.1 
5.9-6.1 

 
42 

21.1 
12.9 

 
51 
52 
38 

 
0.436ି଴.ଶ଺

ା଴.ସଽ 
0.470ି଴.ସଵ

ା଴.ହଶ 
0.118ି଴.ଵଶ

ା଴.ଶ଼

 
- 
- 
- 

 
- 
- 
- 

3XMMJ084002.3+294902(b) 5.9-6.1 89.5 65.5 0.405ି଴.ଶ଻
ା଴.ଷଵ - - 

3XMMJ095906.6+130134(b) 6.1-6.3 61.3 36.6 0.144ି଴.ଵସ
ା଴.ଶଽ - - 

3XMMJ104930.9+225752(b) 6.1-6.3 65.4 40 0.127ି଴.ଵଷ
ା଴.ଵ଻ - - 

3XMMJ113240.2+525701 
OBID 0200431301(b) 
OBID 0200430501(b) 

 
6.1-6.3 
6.1-6.3 

 
28.8 
24.4 

 
50.9 
59 

 
0.425ି଴.ସଶ

ା଴.ହ଻ 
0.203ି଴.ଶ଴

ା଴.ଶଶ

 
- 
- 

 
- 
- 

3XMMJ120429.6+201858(b) 6.1-6.3 15.5 62.2 0.463ି଴.ସ଺
ା଴.଺ସ CT candidate - 

3XMMJ080535.0+240950(a) 5.9-6.1 13 63.3 0.381ି଴.ଷ଼
ା଴.ହ଻ - - 

3XMMJ123843.4+092736(b) 5.9-6.1 81.3 39.2 0.049ି଴.଴ହ
ା଴.ଵ଴ - - 

3XMMJ132348.4+431804(a) 6.1-6.3 89.1 62.2 0.382ି଴.ଵ଻
ା଴.ଶ଺ - - 

a zwabs*(pow+zgau) 
b zwabs*(pow+zgau)+pow 

 

      

 
 

intercepted along the line of sight and the primary radiation is absorbed up to energies that depend on 
the column density of the obscuring material. A fraction of this direct radiation is reprocessed producing 
Fe Kα emission lines. For high column densities (Compton thick) almost the primary radiation is 
absorbed, enhancing the production of the iron line. So we anticipate that sources with a continuum 
spectrum dominated by high excess counts from the emission line to be a Compton-thick source. 
Therefore, sources which are highly dominated by the iron line by a fraction larger than 75% are most 
likely to be Compton-thick AGNs. The critical parameter here is the equivalent width of the kα iron line 
with respect to the underlying continuum. Therefore, we fitted the spectra in the energy range 4.0-8.0 
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keV (1.5-8.0 keV for high redshift source) with the two-component model: absorbed power-law and 
Gaussian line using C-stat in XSPEC. Another component: the unabsorbed power-law, which represents 
the scattered contribution, is added if it is significantly required (indicated by the goodness of fit in 
XSPEC). The two power-law indices are tied to have the same value. A prominent Fe Kα line with large 
EW > 1 keV is a common feature of Compton-thick AGN [4]. So we classified the 6 sources with EW 
> 1 keV as Compton-thick sources. If we take into consideration, the 90% confidence level values of 
EW another 5 sources are classified as Compton-thick candidate. We finally considered an additional 
three sources as CT sources with an EW > 550 eV according to the prediction that EW reaches a 
maximum value of 550 eV [6]. 

4. Discussion 
We have applied a modified method presented by Maccacaro et al [1] to search for Compton-thick AGN 
based on the detection of the excess from Fe k-α emission line. This is followed by spectral fitting to 
estimate the equivalent width of Fe Kα emission line with respect to the continuum. From 40 
observations, we detected the sources in 32 observations, corresponding to 24 individual sources. We 
classified the 24 sources as 9 CT if EW is larger than 550 eV and 5 CT candidates if EW is larger than 
1 keV within the 90% confidence level. Out of 14 CT and CT candidates, 13 are consistent with being 
CT AGN as detected by Corral [2]. Only one CT candidate in our sample (3XMMJ120429.6+201858) 
was not classified as CT AGN by Corral [2] whereas we did not detect two of their CT AGNs 
(3XMMJ091804.2+514113 and 3XMMJ122546.7+123943). For 3XMMJ091804.2+514113 we did not 
find any line excess, probably because of its very low counts. Although we detected a line excess in 
3XMMJ122546.7+123943 the EW do not obey our CT classification.  In addition, those two sources 
disagree with a previous classification as reported by Corral et al [2]. 

Moreover, we find that all 7 detected sources with line fraction > 75% are classified as CT sources. 
This is consistent with in the Compton-thick AGN where the intrinsic continuum is strongly reprocessed. 
For the other 17 remaining sources, we could not classify them through this prediction and the estimation 
of their equivalent width is needed. Finally, our results from this detection technique agree with that 
reported by Corral et al [2].   
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