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Abstract. In this work, we focus on the atom-surface interaction where the geometry of the 
surface is highly symmetric (i.e. sphere, cylinder and plane) and the atom is in ground state. 
We first present the main features of our model, based on the susceptibility tensors of the two 
partners in interaction, to determine a general expression of the dispersive energy of van der 
Waals interaction. Some results are given as applications of this model which addresses recent 
nanophysical problems, for example, when atoms are in the vicinity of metallic nanoshells, 
nanospheres or nanowires. 

1.  Introduction 
A great deal of effort has been devoted to the problem of microsystems such as an atom or a molecule 
interacting, at short or large distance, with the surface of a solid. It has been shown, both theoretically 
and experimentally, that the vicinity of the surface strongly modifies the dynamical properties of the 
atomic system, giving rise to a wide variety of ‘surface effects’, such as van der Waals (vdW) 
interaction, desorption energy, alteration of radiative properties, etc. More recently, the interest in this 
field has been renewed by the realization of micro-, meso- and nanostructures [1]. These are of various 
kinds but, for our purpose, they can be classified into two classes: (i) those leading to a positive 
curvature of the surface, such as microspheres [2] or tips of near-field microscopes (STM, AFM, etc.) 
[3–5]; (ii) those in which the curvature of the surface is negative, such as microcavities and porous 
materials [6–11], fullerenes [9], carbon nanotubes [12]. The latter class deals with the important 
general problem of the physics of confined atoms or molecules. Theoretical methods have been 
developed to calculate dispersive and inductive interactions between a microsystem and a macroscopic 
one treated as a continuous and homogeneous medium. A very concise and general formalism, using 
generalized susceptibilities [13], is particularly well-suited to treat the problem of ground state atom or 
molecule in the vicinity of a sphere. In this formalism, the van der Waals energies are readily 
calculated once the surface field gradient susceptibility tensor, is determined. The paper is organized 
as follows: in section2 the problem of an atom inside a nanoshell of inner radius a and outer radius b is 
considered (see figure 1). The response potentials and the propagators inside the nanoshell are used to 
evaluate the van der Waals energy. The empty cavity is obtained by making the outer radius infinite 
and the case of an atom in the vicinity of a filled nanosphere is obtained by taking the limit when the 
inner radius goes to zero. In section3 similar quantities as before, i.e., the response potential, the 



2

1234567890

Frontiers in Theoretical and Applied Physics/UAE 2017 (FTAPS 2017) IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 869 (2017) 012057  doi :10.1088/1742-6596/869/1/012057

 
 
 
 
 
 

 

propagators outside the nanowire of radius a (see figure 2) are introduced to determine the van der 
Waals for an atom near a metallic nanowire. 

2.  van der Waals energy between atoms and nanoparticles 
In this work, we only present the essentials which enables us to determine the dispersion van der 
Waals energy (for more details one can see for example Refs.13, 16).  

2.1.  Atom near a metallic nanoshell 
Consider an atom in interaction with a spherical nanoshell of inner radius a and external radius b (see 
figure1). The metallic nanoshell is assumed as a continuum medium with dielectric function taking 
into account the mobility of the electrons. For more realistic description we use a simplified Lindhard 
dielectric function, in the hydrodynamic model, involving the spatial dispersion effect in the metal 
[14]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
At intermediate distances, avoiding both chemisorption and retarded effects, the nanoshell is 
considered as continuum medium and dispersion van der Waals energy is given by [15] 
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ሺ௠ሻܵሺ௡ሻሺ ሬܴԦ, ሬܴԦ, ሻandߦ݅ ሺ௠ሻ߯ሺ௡ሻሺ߱ሻare respectively the susceptibility tensor of the field gradient of 
the nanoshell and the multipolar polarizability tensor of the atom at frequency ߱ ൌ  The tensors are .ߦ݅
of order (n+m) and the symbol [m+n] represents their contraction. When one considers only the 
dipolar contribution, this expression simplifies to 

ܷௗ൫ ሬܴԦ൯ ൌ
԰

ଶగ
׬ ሻ൛ܵ௫௫൫ߦሺ݅ߙ			ߦ݀ ሬܴԦ, ሬܴԦ, ൯ߦ݅ ൅ ܵ௬௬൫ ሬܴԦ, ሬܴԦ, ൯ߦ݅ ൅ ܵ௭௭ሺ ሬܴԦ, ሬܴԦ, ሻൟߦ݅
ஶ
଴                                                (2) 

 ሺ߱ሻis the dynamic atomic polarizability which could be written, following Drude Model [13], asߙ
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మ
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where ߙሺ0ሻ is the static polarizability, ߱଴ the angular frequency of the vibrating electrons and  the 
susceptibility tensor is defined as [16] 
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௠ሺΩሻℓ,௠                                                                              (4) 

ℓܶ௠ involves Clebsch-Gordan coefficients,  ∆ℓሺܽ, ܾ, ߱ሻis the reflection factor of the nanoshell and 
ܱଵis a tensor operating on the spherical harmonic ℓܻ

௠: 
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The reflection factor of a nanoshell, with radii a<b, is written then 

∆ℓሺܽ, ܾ, ߱ሻ ൌ
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                                           (6) 
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Figure 2. Atom on x axis in the vicinity 
of a cylindrical nanowire. 
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Figure 1. Atom at distance d from a 
nanoshell of inner and outer radii a and b. 
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Following the work done by C. Girard et al [17], we neglect the off-diagonal elements of the matrix 
Ξℓሺ݇, ݇ᇱ, ߱ሻwhich will be simplified and related to Lindhard dielectric functionߝሺ݇, ߱ሻby 
Ξℓሺ݇, ݇ᇱ, ߱ሻ ൌ ݇ଶߝሺ݇, ߱ሻδ௞,௞ᇲ                                                                                                                (7) 

The reflection coefficient of a nanosphere is easily deducible from eq.(6) when the radius a goes to 
zero 
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                                                                                                                       (8) 

By taking into account this, the van der Waals energy reads to 
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whereܥℓሺܽ, ܾሻ are called the dispersion coefficients which carry the nonlocal behavior of the metal 
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2.2.  Atom near a metallic nanowire 
In a similar manner, except that the cylindrical symmetry involve a new set of eigenmodes, we have a 
relation describing the dispersive interaction between an atom and a metallic nanowire isܷௗሺܴሻ ൌ
԰
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Where ݇∥is the component of the wave vector k along the wire z-axis. The reflection factors of the 
nanowire are given by the following relation [18] 
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௡ᇱܫ ,௡ܭ ,௡ܫ  and ܭ௡ᇱ respectively are the modified Bessel functions and their derivatives. The functions ܨ௡ 
are given by the following relation [19] 
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                                                                                    (13) 

These functions contain all the dynamic information about the nanowire. 

3.  Numerical results and conclusions 
Numerical calculations have been made for a Kr atom in the vicinity of a gold nanoshell, a 
nanosphereand a nanowire. Note that, only in a local treatment, the dispersive energy Ud depends on 

 

Figure 3. Van der Waals energy, in terms of 
the thickness, for Kr atom-Au Nanoshell (inner 
radius=5nm and outer radius=5.5nm). Full line, 
nonlocal treatment; dotted line, local treatment. 

Figure 4. Van der Waals energy in terms of d 
the approach distance Kr atom-Au nanowire 
(radius 1.5 nm). Full line, nonlocal treatment; 
dotted line, local treatment. 
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the distance d as Cd-3 (where the coefficient C is geometry dependent). In figure 3, the energy is 
plotted, when the atom is near a nanoshell as a function of the thickness e=b-a, the distance d being 
fixed at 6 a.u and a difference between local and nonlocal treatments namely for small distances is 
observed. The asymptotic value of Ud at large e coincides with the energy of the atom in front of an 
infinite metallic medium limited by a plane while case of a  nanosphere is simply deduced by 
cancelling the radius a from the equations given above. Figure 4 represents the energy values when a 
Krypton atom is absorbed by a gold nanowire which confirms that the local energy is larger than the 
nonlocal one. 

One can conclude that with this method, using susceptibilities of the two partners in interaction, 
one gets van der Waals energies (namely the quantum part of energy due to fluctuating charges) 
between atoms and nanoparticles with spherical or cylindrical symmetry. The method is readily 
extendable to molecules provided that one adds higher multipolar contributions. Spatial dispersion 
effect becomes very important when the atom is very close to the particle (few angstroms). 
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