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Abstract. We develop Maggiore and Mancarella non-local model by using new  function, 

fሺmଶ ୖ

మሻ and we obtained analytical hyperbolic tangent function. This new model has expansion 

history exactly as same as ΛCDM (Lambda Cold Dark Matter) with same matter content, but 
without cosmological constant or dark energy. However, background evolution in our model and 
ΛCDM are the same, but these models may be distinguishable in structure formation or 
observation that will contain additional information more than background level. 

1.  Introduction 
Universe expansion was discovered by Edwin Hubble [1] in 1929. Multiple evidences such as cosmic 
microwave background [2], supernova observations [3] and galaxy distribution [4] lead to the discovery 
of accelerating expansion of the Universe. The standard interpretation of this acceleration, in the form 
of a cosmological constant [5] raises some fundamental problems and questions. Why the cosmological 
constant should be much smaller than any other scale in physics and why it should have the right 
magnitude have all recently came into question [6]. Modified gravity theories have been also considered 
for Universe accelerating expansion [7]. For example, ݂ሺܴሻ theories [8] which generalize the Einstein-
Hilbert Lagrangian from ܴ to ݂ሺܴሻ can be used to create a model which exactly reproduces the ΛCDM 
expansion history just by choosing ݂ሺܴሻ ൌ ܴ െ  More generally, ݂ሺܴሻ theories can deviate from .[9] ߉2
observations even with no perturbation consideration. 

In 2007 Deser & Woodard [10], proposed a new class of modified gravity models, which add some 
inverse differential operators of the curvature invariants terms to the Einstein-Hilbert action. The 

simplest choice is the inverse of the d'Alembert operator operator acting on the Ricci scalar,	݂ ቀ
ଵ


ܴቁ. 

The function 	݂ ቀ
ଵ


ܴቁ is dimensionless obviously, therefore this model does not have explicit mass scale 

in contrast to the non-local models that we will discuss later. In the literature, more activity is dedicated 

for identifying the form of the function ݂ ቀ
ଵ


ܴቁ in order to obtain background evolution of ΛCDM. The 

final result for, ݂ሺ
ଵ


ܴሻ 	ൌ 	ܽଵሾtanhሺܽଶܻ	 ൅	ܽଷܻଶ 	൅	ܽସܻଷሻ 	െ 	1ሿ (where ܻ	 ൌ 	

ଵ


ܴ	 ൅	ܽହ, and 

ܽଵ, . . . ܽହ are coefficients obtained by fitting ݂ሺܺሻ to the observed expansion history) [11] which does 
not agree with observations. A good review about this model can be found [12].  

Another choice is adding directly a term involving ቀܴ
ଵ

మ ܴቁ to the Einstein-Hilbert Lagrangian and 

it will reproduce dark energy dynamically again. This modification has been argued as a consistent 
infrared modification of General Relativity (GR) theory and also it is ghost–free [13]. This scenario has 
been greatly studied in the field of cosmological perturbations and other observable imprints [14]. 

Therefore, we focus in particular on the generalized ܴ
ଵ

మ ܴ model, and the paper is organized as 

follows: We introduce a generalized non-local gravity model in section 2, and in section 3 equations of 
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motion (EOM) are derived. We find distortion function by reconstructing the Λܯܦܥ expansion history 
in section 4. Finally, in section 5 conclusions and discussion are given. 

2.  The model 
A non-local modified GR model proposed by Maggiore and Mancarella was based on the following 
action [13] 

                                  ܵ ൌ
ଵ

ଵ଺గீ
׬	 ݀ସݔඥെ݃ ቂܴ െ

ଵ

଺
ܴ
௠మ

మ ܴቃ,																																																																										ሺ1ሻ 

in order to reproduce the observed amount of dark energy. Where  
ଵ


 is formal inverse of d’Alembertian 

operator ,, in the scalar representation which can be expressed as the convolution with a bi-scalar 
Green’s function ܩሺݔ,  :ሻݕ

              ቀ
ଵ


ܴቁ ሺݔሻ ≡ ,ݔሺܩሻݕඥെ݃ሺݕସ݀׬ ,ݔሺܩ௫				,				ሻݕሻܴሺݕ ሻݕ ൌ

ଵ

ඥି௚ሺ௫ሻ
ݔସሺߜ െ  ሺ2ሻ																						ሻݕ

This model seems to have advantages to other non-local models that have already been confronted 
with observations [10-12,15]. The non-local term in equation (1) is controlled by a mass scale, ݉, in 
contrast to the non-local models of Deser & Woodard [10] and Barvinsky [16], which does not have 
such mass scale. The parameter ݉ is approximately of the order of ܪ଴. As a result, this modification 
will not affect the solar system tests and therefore in small scale, we cannot observe any deviation from 
the GR. This model will generate dark energy dynamically and by choosing ݉ ൎ  ଴, we canܪ0.28

reproduce the present observed value of cosmological constant [13]. Additional features of  
ଵ


R and  

ଵ

మR 

models, is that by choosing ݐ௦ () to lie inside the radiation-dominated era one obtains a natural onset for 
the appearance of dark energy. Indeed, since ܴ	 ൌ 	0 during radiation dominated era, the deviation from 
GR starts in matter domination era and the precise value of ݐ௦ (start time of the accelerating expansion 
of the universe) is not important.  

We develop the Maggiore and Mancarella model by replacing ቀെ
ଵ

଺
ܴ
௠మ

మ ܴቁ term with ݂ ቀ݉ଶ ோ

మቁ in 

equation (1). As a consequence, we use the following action 

                      ܵ ൌ ׬ ቂ
ோ

ଵ଺గீ
ቂ1 ൅ ݂ ቀ݉ଶ ோ

మቁቃ ൅ ࣦ௠௔௧௧௘௥ቃ ඥെ݃݀ସݔ .																																																													 ሺ3ሻ 

The free parameter ݂ሺܺሻ in equation (3) is known as the nonlocal distortion function and it is function 
of its dimensionless argument which will be determined by matching with expansion history of ΛCDM 
model. 

3.  Equations of motion 
In all models field equations are obtained by varying the actions with respect to the metric, ݃ఓఔ. For flat 
Friedmann–Lemaitre–Robertson–Walker (FLRW) metric, the EOM will take the following forms 
ଶܪ3        ൅ ௧௧ܩ∆ ൌ  ሺ4ሻ																																																																																																																																						ߩܩߨ8
        െ2ܪሶ െ ଶܪ3 ൅

ଵ

ଷ௔మ
௜௝ܩ∆௜௝ߜ ൌ  ሺ5ሻ																																																																																																										ܲܩߨ8

where ߩ and ܲ are the total energy density and pressure of matter respectively and the non-local terms, 

 & ௧௧ܩ∆
ଵ

ଷ௔మ
 ௜௝, areܩ∆௜௝ߜ

௧௧ܩ∆

ൌ ሺ3ܪଶ ൅ ௧ሻ߲ܪ3 ቈ݂ ൬݉ଶ ܴ

ଶ൰ ൅
1

ଶ ൤ܴ݂
ᇱ ൬݉ଶ ܴ

ଶ൰൨቉

൅
1
2
݉ଶ ൤∂௧ ൬

ܴ

ଶ൰ ∂௧ ൬
1

൤ܴ݂ᇱ ൬݉ଶ ܴ

ଶ൰൨൰ ൅ ∂௧ ൬
ܴ

൰ ∂௧ ൬

1

ଶ ൤ܴ݂
ᇱ ൬݉ଶ ܴ

ଶ൰൨൰൨

൅
1
2
݉ଶ ൬

ܴ

൰ ቈ
1

൤ܴ݂ᇱ ൬݉ଶ ܴ

ଶ൰൨቉																																																																																																																									 ሺ6ሻ 



3

1234567890

Frontiers in Theoretical and Applied Physics/UAE 2017 (FTAPS 2017) IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 869 (2017) 012056  doi :10.1088/1742-6596/869/1/012056

 
 
 
 
 
 

1
3ܽଶ

௜௝ܩ∆௜௝ߜ

ൌ ൫െ2ܪሶ െ ଶܪ3 െ ߲௧
ଶ െ ௧൯߲ܪ2 ቈ݂ ൬݉ଶ ܴ

ଶ൰ ൅ ݉ଶ 1

ଶ ൤ܴ݂
ᇱ ൬݉ଶ ܴ

ଶ൰൨቉

൅
1
2
݉ଶ ൤∂௧ ൬

ܴ

ଶ൰ ∂௧ ൬
1

൤ܴ݂ᇱ ൬݉ଶ ܴ

ଶ൰൨൰ ൅ ∂௧ ൬
ܴ

൰ ∂௧ ൬

1

ଶ ൤ܴ݂
ᇱ ൬݉ଶ ܴ

ଶ൰൨൰൨

െ
1
2
݉ଶ ൬

ܴ

൰ ቈ
1

൤ܴ݂ᇱ ൬݉ଶ ܴ

ଶ൰൨቉,																																																																																																																				ሺ7ሻ 

where prime denotes the derivative respect to argument of function. 

4.  Reconstruction function 
We will use Woodard and Deffayet method [11] in order to find the reconstruction function. By 
subtracting equation (5) from equation (4), we obtain following second order differential equation 

ଶܪ6 ൅ ሶܪ2 ൅ ቊ൫6ܪଶ ൅ ሶܪ2 ൅ ௧߲ܪ5 ൅ ߲௧
ଶ൯ ቈ݂ ൬݉ଶ ܴ

ଶ൰ ൅ ݉ଶ 1

ଶ ൤ܴ݂
ᇱ ൬݉ଶ ܴ

ଶ൰൨቉

൅ ݉ଶ ൬
ܴ

൰ ቈ
1

൤ܴ݂ᇱ ൬݉ଶ ܴ

ଶ൰൨቉ቋ ൌ ߩሺܩߨ8 െ ܲሻ																																																														ሺ8ሻ 

Because we want to reproduce ΛCDM cosmology with the same matter content, but without any 
cosmological constant, therefore the Hubble parameter, ܪ, appearing in equation (8), is a solution of the 
famous standard Friedmann’s equations. We can compute 8ܩߨሺߩ െ ܲሻ term from Friedmann’s 
equations and it can be plugged in to equation (8)  

൫6ܪଶ ൅ ሶܪ2 ൅ ௧߲ܪ5 ൅ ߲௧
ଶ൯ ቈ݂ሺܺሻ ൅݉ଶ 1

ଶ ሾܴ݂
ᇱሺܺሻሿ቉ ൅ ݉ଶ ൬

ܴ

൰ ቈ
1

ሾܴ݂ᇱሺܺሻሿ቉ ൌ െ6ܪ଴

ଶΩஃ								ሺ9ሻ 

Where, Ωஃ ൌ
ஃ

ଷுబ
మ and ܺ ൌ ݉ଶ ோ

మ. 

If we define a new function ܻሺݐሻ ൌ 	
ଵ

మ ሾܴ݂ᇱሺܺሻሿ, we obtain an ODE for ܻሺݐሻ 

ሻܻሺ଺ሻݐ଺ሺܥ ൅ ሻܻሺହሻݐହሺܥ ൅ ሻܻሺସሻݐସሺܥ ൅ ሻܻሺଷሻݐଷሺܥ ൅ ሻܻሺଶሻݐଶሺܥ ൅ ሻܻሺଵሻݐଵሺܥ ൅ ሻݐ଴ሺܥ ൌ 0																	ሺ10ሻ 

Where ൌ
ଵ


ܴ , ܻሺ௡ሻ ൌ

ௗ೙

ௗ௧೙
ܻ and ܥ௡ coefficients are function of (ܪ, ܾ, ܺ) which we don’t show them 

here.  
For solving equation (10) numerically, we have to calculate first the  ܥ௡ coefficients. Therefore, we 

wrote a program in Fortran language for computing ܥ௡ coefficients, and then equation (10) can be solved 
with the Runge-Kutta method. In this step we need to know the initial condition of ܻሺ௡ሻห

௧బ
, ݊ ൌ

1, 2, … , 5, where  ݐ଴ is the initial starting point. We can choose all initial conditions be zero, because 

ܴ݂ ቀ݉ଶ ோ

మቁ as well as ݂ ቀ݉ଶ ோ

మቁ must tend to zero in the initial time. After finding ܻሺଵሻሺݐሻ, we can 

obtain ݂ሺݐሻ with the condition ݂ሺݐ଴ሻ ൌ 0. Finally, by computing ݐሺܺሻ we can find distortion function 
݂ሺܺሻ. The numerical solution for distortion function ݂ሺܺሻ is shown in figure 1. For finding a suitable 
function that will be fitted with the numerical results of figure 1, we tried to use many functions and 
finally, we found the following best analytic function 
݂ሺܺሻ ൌ െ0.48999 ൈ tanhሺ1.32489 ൈ	ܺ଴.଼ െ 1.24632 ൈ 	ܺ ൅ 0.35843 ൈ	ܺଵ.ଶሻ																												ሺ11ሻ 

Moreover, the fitted curve and regular residuals are demonstrated in figure 2. 
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Figure 1. Numerical result for distortion 
function ݂ሺܺሻ.               

 
Figure 2. Fitted curve (red line) and regular            
residuals (blue line) for distortion function ݂ሺܺሻ.   

 
 

5.  Results and discussion 
We chose Maggiore and Mancarella model and develop it in the form of equation (3) to 
reproduce ΛCDM expansion history. For this purpose, we used Woodard and Deffayet method 
to find distortion function ݂ሺܺሻ numerically, and found the analytic function in the form of 
equation  (11). 
This model has expansion history exactly as same as ΛCDM with same matter content, but 
without cosmological constant or dark energy. However, background evolution in our model 
and ΛCDM are the same, but these models may be distinguishable in structure formation or 
observation that will contain additional information more than background level. Derivative of 
function ݂ሺܺሻ at ܺ ൌ 0, is infinite. As a result, this term, can make significant corrections to 
GR theory when it expands around flat space. In equation (4) we have only ܴ݂ᇱሺܺሻ, however, 
݂ᇱሺܺሻ will be very large at ܺ ൎ 0, but ܴ is very small and consequently ܴ݂ᇱሺܺሻ will be finite. 
It would be extremely interesting to apply those tests for close massive binary, solar system and 
gravitational lensing. 
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