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Abstract. The commonly accepted scientific opinions on the inner core as the deformable solid 
globe are based on the solution of the problem on the distribution of elastic parameters in the 
inner structures of the Earth. The given solution is obtained within the necessary integral 
conditions on its self-weight, moment of inertia concerning the axes of rotation and periods of 
free oscillations of the Earth. It is shown that this solution does not satisfy the mechanics of the 
deformable solid body with sufficient local conditions following from basic principles 
concerning the strength, stability and actuality of velocities of propagation of elastic waves. The 
violation of local conditions shows that the inner core cannot exist in the form of the deformable 
solid body within the commonly accepted elastic parameters.  

1.  Introduction  
The results of geomechanical analysis of geophysical data are given within the non-classical linearized 
approach (NLA). At the same time numerical data of Preliminary Reference Earth Model (PREM) [1] 
are used considering the fact that the parameters of the inner core provided in this paper taken as a basis 
in all pre-proposed theoretical models of the medium [2]. 
 The purpose of geomechanical analysis is to determine the conditions for pressure and deformation 
that ensures the accuracy of calculations of physical and mechanical parameters of the model of the 
Earth's solid core on the basis of geophysical dataset. 

2.  Achievements of theoretical limit of strength 
Let's consider the case when the medium is evenly and uniformly deformed prior to the beginning of 
fracture. In this case, if the pressure value does not exceed the theoretical limit of strength, all 
calculations on the physico-mechanical parameters are correct. It is shown in the NLA [3] that the value 
of the theoretical limit of the strength of the medium is determined from P   under the conditions of 

compression (we are interested in this variant of deformation) for a perfect elastic isotropic material. 
This is found from the condition of the loss of ellipticity of the basic equation of motion [3].   

3. Instability of equilibrium state  
The uniform distribution of deformation in the medium can also be violated as a result of the instability 
(in various forms) without fracture. 
 NLA allows defining the limits of change of deformation within the framework of which the 
equilibrium of uniformly deformed states is stable [4, 5, 6]. Deformation in the globe is nonuniformly 
distributed long before the limits of strength of material were reached in case of realization of instability. 
Stability of solid globe is considered to concretize the discussion [5]. It is considered that:    a) 
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elastic isotropic body with potential of harmonic type within the theory of large initial deformations and 
conditions of stability are obtained in the form  
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 b) elastic body with quadratic potential within the theory of the second variant of small initial 
deformations and conditions of stability are obtained in the form   
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 c) elasto-plastic body (deformation theory) within the theory of the second variant of small initial 
deformations and condition of stability are obtained in the form  

Р  ;                                                                 (3) 
 d) elasto-plastic body (Prandtl-Reuss theory of plasticity) within the theory of the second variant of 
small initial deformations is obtained in the form 

2
1Р   .                                                              (4) 

 It is shown for all the considered models of the medium that the equilibrium state is stable in case of 
setting follower loads on the surface of an isotropic globe under the fulfillment of conditions (1)-(4). 
 The stability of body in the form of the globe is considered in case of influence of "dead" loads on 
its surface. It is shown that there is a critical load .crР  

(according to the value this load is less than the 

value  ) in reaching of which uniform deformed state of equilibrium of the globe is unstable. The 
critical forces and deformation leading to the loss of stability of the equilibrium state of the globe are 
determined within the theory of the second variant of small initial deformations 
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 In case of the theory of large initial deformations and the use of harmonic elastic potential, critical 
value of shortening is defined in the form 
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 In equations (1)-(6),   and   are Lame's moduli,   is Poisson's ratio and P is pressure parameter. 

4. Internal instability 
Critical values of stress and deformations leading to violation of conditions of ellipticity of basic 
equations cause the phenomenon  in the body which is called the "internal" instability in the theory [ 5, 
6]. 
 In case of modelling the deformation process using harmonic elastic potential within the theory of 

large initial deformations, the limit value of elongation (shortening) coefficient 
*
1  is defined in the 

form 
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and in the following form in case of quadratic elastic potential within the theory of large initial 
deformations  
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In case of linear elastic isotropic material within the theory of the second variant of small initial 
deformations, we get  
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 0  is a parameter of overall deformation in equations (7)-(9). It follows from the aforementioned 
equations (1)-(4) and (7)-(9) that the "internal" instability occurs within the NLA in overall uniform 
deformation (compression) of isotropic globe at a level of pressure comparable in value with shear 
moduli. 

5. Elastic wave propagation in the deformed medium 
Such problems are intensively studied in [4, 6,7]. The fulfilment of condition of ellipticity of basic 
equations also provides an actuality (not negative value) of velocities of propagation of small 
perturbations.  
 In case of overall uniform pre-compression of isotropic medium, "true" velocities of propagation of 
elastic waves in it are defined by expressions [6] 

2 2 R
l pС PK     ;        

2 R
S SС PK   .                                   (10) 

Where ,l SС C   are "true" velocities of quasi-pressure and quasi-shear elastic waves; ,R R
p SK K  are 

coefficients of nonlinear action of isotropic medium [7].  
 In cases of the theory of the second variant of small and large initial deformations, pressure elastic 
wave with true velocity cannot be propagated in the quadratic elastic potential under the fulfillment of 
condition  
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in the stressed isotropic medium. This condition takes the following form for shear elastic waves 
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6. Numerical results and discussions   
The calculated values of the critical forces and elongations leading to the loss of stability of the 
equilibrium state of the deformed globe are given in table 1. The values of *P   are calculated 
according to equation (9). "Internal" instability is realized in reaching these values of surface loads in 
the globe in case of small initial deformations. 

Table 1. Critical parameters of instability. 

  0 0.1 0.2 0.3 0.4 0.41 0.45
*P   1 1 1 1 1 1 1 

*P   0.5 0.53 0.57 0.60 0.64 0.64 0.65
*
1  

0.5 0.58 0.67 0.76 0.88 0.89 0.94

 1 *


 
0.75 0.79 0.84 0.89 0.94 0.94 0.97

The values of 
*
1 calculated according to the equation (7) shows that similar process also occurs in the 

case of large initial deformations. The values of *P   and  1 *
  which causes the loss of stability in 

the globe on the geometric form change are calculated according to equations (5) and (6) respectively. 
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Comparisons of the values *P   with *P  and 
*
1 with  1 *

  shows that the process of loss of 

stability of the globe on the geometric form change precedes the process of the "internal" instability. 
 Calculations are also performed according to the equations (11) and (12). Elastic pressure waves with 
true velocity cannot propagate in the globe in reaching the numerical values of lP 

 
given in table 2. 

Similar results for SP  are also obtained in the case of shear elastic waves. The data obtained for small 
initial deformations are given in the numerators and the data obtained for large initial deformations are 
given in the denominators. 

Table 2. Critical values lP   and SP   for different Poisson's ratio. 

  0 0.1 0.2 0.3 0.4 0.41 0.45 
 
 

lP   
0.6667

0.4
 

0.8534

0.5266

1.1429

0.7273
 

1.6852

1.1098
 

3.2308

2.2105

3.5689

2.4518
 

6.2549

4.3699
 

 
 

SP   
0.5

0.3333
 

0.5789

0.4074

0.6667

0.5
 

0.7647

0.6190

0.875

0.7778

0.8868

0.7966
 

0.9355

0.8788
 

    Contrary to the results of table 2, data given in PREM [1] shows that elastic waves propagate in the 
solid core of the Earth even under higher baric conditions. 

7. Conclusions 
The establishment of features of deformation process in the baric conditions of the internal solid core 
related to reaching the ultimate strength of the medium, forms of instability of the isotropic globe and 
the impossibility of propagation of elastic waves in the medium is new and not taken into account in the 
existing theoretical models of the Earth [1, 2]. 
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