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Abstract. To present the main influence of anomalous diffusion on the energetic particle
propagation, the fractional derivative model of transport is developed by deriving the fractional
modified Telegraph and Rayleigh equations. Analytical solutions of the fractional modified
Telegraph and the fractional Rayleigh equations, which are defined in terms of Caputo fractional
derivatives, are obtained by using the Laplace transform and the Mittag-Leffler function method.
The solutions of these fractional equations are given in terms of special functions like Fox’s H,
Mittag-Leffler, Hermite and Hyper-geometric functions. The predicted travelling pulse solutions
are discussed in each case for different values of fractional order.

1. Introduction

Anomalous diffusion is an ubiquitous phenomenon and one of the fundamental processes for
transport of matter in different systems [1-2]. The anomalous diffusion, based on the mean
square displacement of the diffusing species < 22(t) ~ t* > for a slow process with 0 < o < 1
is called sub-diffusive. The sub-diffusion process has been observed in many physical systems
such as spatially disordered or fractal media and in the temporal fluctuations of the medium
[3]. It is well- known that sub-diffusion equations in terms of fractional derivatives can be
obtained from Continuous Time Random Walk models [4]. In general, the anomalous regimes
are characterized by non-Gaussian statistics like Levy statistics, which encompasses probability
distributions with power-law tails. One of the methods describing the anomalous process is
to replace the ordinary time and space derivatives in a standard kinetic equation by fractional
time and space derivatives. In this paper, we introduce the fractional Klein-Kramer equation
which can be considered as an extension of the fractional diffusion equation by using the Caputo
fractional derivative [5]. Caputo’s definition the derivative of any continuous function ¢(t) is as
follows
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Some endeavors to understand the energetic particle transport in the cosmos [6] consider the
Langevin equation [7] for the coordinate z(t)
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where m is the mass of a diffusing particle, 7 denotes a friction coefficient, F(z) is the external
force field and I'(¢) is a Gaussian white noise and represent the source of the anomalous behavior.
Below we introduce the approximations of the fractional Klein-Kramer equation to describe the
sub-diffusion process. Two limiting cases can be distinguished, namely the fractional modified
Telegraph from which the probability distribution function can be derived and the fractional
Rayleigh equation controlling the velocity distribution in the force-free limit. The paper is
organized as follows. In section 2, the fractional modified Telegraph and the fractional Rayleigh
equations are derived from the fractional Klein-Kramer equation and by using the Laplace
transform with the Mittag-Lefller function method, we obtain the analytical solutions of the two
fractional equations. Finally, the predicted traveling pulse solutions for each case at different
values of fractional order are illustrated in section 3.

2. The Klein-Kramer equation and its approximations

From the Langevin equation (2), one can derive the corresponding fluctuation-averaged phase
space dynamics governed by the Klein-Kramer equation, which describes the Brownian motion
of particles with the presence of an external force F(z)
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where W (z,v,t) is the distribution function of energetic particles, kg is Boltzmann constant,
and T is the absolute temperature. The generalization to anomalous diffusion behavior leads to
the fractional Klein-Kramer equation
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where Df* and D? are the Caputo fractional derivative operator defined in equation (1) for time
and space respectively.

2.1. Analytical solution of the fractional modified Telegraph equation
The first approximation of the fractional Klein-Kramer equation is obtained by using the Davies

approach [8] and by integrating equation (4) over both / .dv and / .wdv. A combination of both

resulting equations leads to the fractional modified Telegraph equation with an external force

7DD w(z,t) + Dfw(z,t) = BDPw(z,t) + ADPDPw(z,t), (5)
o0
where w(z,t) = / W(z,v,t) dv, % =7,A= % , B = %gf) and F' is a constant force.The

values of all paramgiers depend on the comparison with the modified Telegraph equation in Ref.
[9] which describes the diffusion of energetic particles for isotropic density case. We introduce
a separation ansatz of the form w(z,t) = ¢(z) T'(t) together with a choice of initial conditions
that is compatible with [9]:

T00)=1, 9,T(0)=0. (6)

We use the Mittag-Leffler function method [10] to solve the spatial part ¢(z) and Laplace
transform to solve T'(t). Finally, the general solution of the space time fractional modified
Telegraph equation is given by
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where A is the separation constant, which we take as minus unity.

z

[=—p-1" "+ p075 — - p-05]

[t 009 — - 0-08]

Figure 2. Predicted travelling pulse
solutions of the fractional modified Telegraph
equation (7) for different values of S at = 1.

Figure 1. Predicted travelling pulse
solutions of the fractional modified Telegraph
equation (7) for different values of a at § = 1.

2.2. Analytical solution of the fractional Rayleigh equation

To describe the distribution in velocity space averaging out the particle position in the absence
of an external force with integration by parts the fractional Klein-Kramer equation (4) will be
reduced to the fractional Rayleigh equation
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where (v, t) = / W(z,v,t) dz. The Rayleigh describes the relaxation of the probability
oo

distribution function (v,t) toward the stationary Maxwell distribution [11]. To solve the
fractional Rayleigh equation (8) consider the function ¥ (v,t) to be separated into two parts
(v, t) = F(v) w(t), with the initial value given by

w(0) =1, dw(0)=0. (9)

Then, the general solution of the fractional Rayleigh equation reads:
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where A is the separation constant, which we take as minus unity, E, 1 is the Mittag-Leffler
function [12], H is the Hermite function [13] and F; is the Hyper-geometric function [14].
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Figure 3. Predicted travelling pulse solutions Figure 4. Predicted travelling pulse solutions
of the fractional modified Telegraph equation (7) of the fractional Rayleigh equation (10) for
for different values of 7 at « = 8 = 1. different values of «a.

3. Discussion and conclusion

Litvinenko et al [9] derived a modified Telegraph equation for isotropic density case, which
describes the probability distribution function for the energetic particle transport in the
heliosphere. We choose the physical parameters in equation (5) to construct a generalization of
the modified telegraph equation to describe the sub-diffusion process of the energetic particles.
In figure 1, the solution of the fractional modified telegraph equation illustrates the probability
distribution function for both normal diffusion and sub-diffusion processes for different values of
time fractional order and attempts to show the accurate prediction on a shorter time scale. Also,
the sub-diffusion of the energetic particle is characterized by the non-Gaussian distribution such
as in figure 2. Furthermore, in figure 3, we show the change of the probability distribution
function for different values of relaxation time. Hence, depending on the parameters, the
relaxation time can show either weak or strong z dependence. Finally, in the velocity space,
the velocity distribution of the energetic particles in the sub-diffusion limit deviate from the
Maxwellian as illustrated in the solution of the fractional Rayleigh equation figure 4.
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