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Abstract. We study theoretically a cluster of several interacting spins modelling a hypothetical 
single-molecule magnet.   Starting from a spin Hamiltonian, we obtain the individual energy 
levels and their evolution in an applied magnetic field. By substituting the energy levels into the 
partition function, we compute macroscopic observables like the magnetisation and the 
susceptibility of the system. 

1.  Introduction 
Low-dimensional magnetic materials [1] attract interest because their fascinating physical properties 
show potential applications in areas such as high-density information storage, quantum computing, and 
biomedical applications such as magnetic resonance imaging [2]. Of particular interest are single-
molecule magnets [3] which can be synthesized in a bottom-up approach using an increasing number of 
magnetic centres [4] such as transition metals or rare earth ions with spins equalling 5/2 or 7/2. These 
nano-magnets reveal a slow relaxation of the magnetization at low temperature and offer a controllable 
approach to nanoscale magnetism, where the energy barrier to magnetization reorientation is derived 
from the anisotropy of the molecular spin rather than the movement of domain walls, as in bulk magnets. 

Theoretically these nano-magnets are remarkable because they offer enough complexity to yield new 
types of properties while simple enough to study in detail. They proved to be testing grounds for theories 
of the coexistence of quantum and classical phenomena [5]. The magnetic interactions in molecular 
systems are in principle the same as those in continuous lattices. However, the pair interactions are 
strongly localized in molecular systems with a predominantly electrostatic origin.  

In this paper, we theoretically investigate a cluster of several interacting spins modelling a 
hypothetical single-molecule magnet. Starting from an effective spin Hamiltonian, we obtain the 
individual energy levels and their evolution in an applied magnetic field. In the effective spin 
Hamiltonian, all orbital coordinates are eliminated and replaced by spin coordinates while taking 
advantage of the symmetry properties of the system. We use a basis consisting of eigenfunctions of the 
total spin operator to ensure that the Hamiltonian is block-diagonal. This is straightforward in principle, 
but the problem rapidly grows in complexity as in general there are (2Si + 1)N  states for N spins. We also 
utilize an irreducible tensor method which exploits the symmetry of the full rotation group to derive the 
energy levels of the system. 

2. The spin model 
The interaction between localized spin magnetic moments in the strong exchange limit is described by 
the Heisenberg model. 
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         2 Sij i j B i
ij i

H J S g B S     
  

            (1) 

Jij is a symmetric matrix containing the exchange parameters between spins at sites i and j. Jij < 0 
corresponds to antiferromagnetic and Jij > 0 to ferromagnetic coupling. The first sum in (1) runs over all 

possible terms (i, j). The vector operators iS


 are the single-particle spin operators. The last term 
(Zeeman) describes the interaction with an external magnetic field which is assumed to be along the z-
axis. The dimensionless spin operators in (1) obey the commutation relations 

,i j ij iS S i S                     (2) 

where , ,  refer to the Cartesian coordinates and   is the totally anti-symmetric Levi-Civita 
symbol. For a large cluster, the general problem of finding the eigenvalues of Hamiltonian (1) is 
challenging because of the lack of translation symmetry which prevents the reduction of the size of the 
matrix. Here we consider clusters comprising a reduced number of exchange-coupled spins and special 
topologies which allow exact solution of equation (1). 

2.1. Two spin Cluster 
The Hamiltonian for a pair of spins in the strong exchange limit is 

    2 S ( )z z
i j B z i jH J S g B S S    
 

            (3) 

It can be exactly solved by using the total spin Si jS S 
  

whose square has eigenvalues 

2 ( 1)S S S 


in the basis | , ;i jS S SM   with 0 2S s  and i jS S s  . zS has eigenvalues M 

with 2 2s M s   . The eigenvalues of the pair Hamiltonian (3) are 

      ( 1) 2 ( 1) B zE J S S s s g B M              (4) 

 
The magnetisation and the susceptibility are found from the partition function which is given by 
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where the summation over M is performed and  B zx g B  , 1/ ( )Bk T  . The free energy is  

lnBF k T Z                (6) 

To find the magnetic susceptibility defined below in (8) as the second derivative with Bz as  0zB  , it 
is sufficient to expand the partition function in Bz and keep terms up to Bz

2. This gives 
2
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The magnetic susceptibility is 
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For a cluster of two spins s=1/2, the partition function reduces to 
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1 (1 2cosh )JZ e x                (9) 

The average pair magnetization is  
4sinh( )

1 2cosh( )J

x

e x 
 

M            (10) 

2.2. Three spin cluster 
The Hamiltonian for a three spin cluster in the strong exchange limit is  

1 1 2 2 1 3 3 2 3 1 2 32 S 2 S 2 S ( )z z z
B zH J S J S J S g B S S S         

     
          (11) 

1

32

J1

J3

J2

 

Figure1. Three spin cluster. 

The eigenstates of (11) are found in the basis that diagonalizes 2S


and Sz where S


 is the total spin 
operator. These states though are not uniquely determined by S and Mz, but require an additional 

quantum number which depends on the coupling scheme of the spins. Here, we first couple 1S


 with 2S


 

to give 12 1 2S S S 
  

and then 12S


 with 3S


 to give 12 3S S S 
  

. The resulting states are labeled by the 

eigenvalues of the commuting set  2 2 2 2 2
1 2 12 3, , , , , zS S S S S S
    

as |S1S2S12S3SM>, and (11) reduces to 

    2 2 2 2 2 2
1 12 1 2 2 12 3 2 3 2 3S S S S S S 2( )Sz

B zH J J g B S J J S          
       

     (12) 

For a symmetric spin arrangement for which J2 = J3, (12) is completely diagonal with eigenvalues 

       1 1 2 12 2 3 12( ) B z zE J S S S J S S S g B M                       (13) 

Here ( 1)S S S     , 1 2 12 1 2| |S S S S S    and 12 3 12 3| |S S S S S    . When J2≠J3, the last term 

in (12) is not diagonal.  Its matrix elements can be obtained by Wigner-Eckart [6] theorem 
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 

(14) 

The curly brackets are 9-j symbols whose numerical values are given in tables such as in Ref. [7], and 
some packages such as in Mathematica.  For a cluster of three S =1/2 spins, S12 = 0, 1 and S = 3/2, 1/2. 
In this case we obtain compact expressions for the eigenvalues of (12) as follows 
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     1 2 3( 3 / 2, ) ( ) / 2 ; 3 / 2, 1/ 2B zE S M J J J g B M M           (15) 

      1 2 3( 1/ 2, ) ( ) / 2 ; 1/ 2B zE S M J J J g B M M            (16) 

and 2 2 1/2
1 2 2 3 1 2 2 3[( ) ( ) ( )( )]J J J J J J J J        . The magnetic susceptibility for 0zB   is 
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 


 
        (17) 

For a linear cluster, we put J2=0, in equations (11-17). 

1 32
J1 J3  

Figure 2. Three spin linear cluster. 

3. Conclusion 
Starting from an effective spin Hamiltonian, we have investigated the magnetic properties of a spin 
cluster. Using a spin coupling scheme and Wigner-Eckart theorem we computed exactly the energy 
levels, the free energy, and the magnetic susceptibility. These findings are useful for large systems made 
of weakly interacting small clusters (e.g. three-spin clusters), in which the system’s magnetic 
susceptibility is that found in eq.17 times the total number of clusters. Moreover these findings form a 
good basis to treat approximately complex Heisenberg systems of many interacting degrees of freedom.  
In this case, the small cluster encompasses the short range effects and the spin operators outside the 
cluster are approximately replaced by their expectation values.  The resulting reduced and more 
manageable problem is similar to the one studied here, and is solved in a self-consistent way. 
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