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Abstract. Without applying Born-Oppenheimer approximation, the non-relativistic Hamil-
tonian can be separated into Hamiltonians for the translation of the center of mass and for
the rotational and internal motions of the closed many-body system. This exact rotational and
internal Hamiltonian can be expressed in terms of three Euler angles for three independent
rotations of the system and the rotated Jacobi coordinates for the internal motions.

1. Introduction

In the realm of non-relativistic quantum mechanics of molecules, the original form of the
total Hamiltonian can be separated into Hamiltonians for translational and non-translational
motions. One usually first applies Born-Oppenheimer approximation (BOA) to separate the
non-translational motion into the motions of electrons and nuclei and then separate the nuclear
motions into the rotational and vibrational motions [1]. But for a closed many-body system
consisting of arbitrary interacting particles (including muons for example), where BOA cannot
be applied, the Hamiltonian cannot be separated into Hamiltonians of specific particle sorts. In
this case, one can still rewrite the non-translational Hamiltonian specifically for the rotational
and internal motions of the system, that can be described separately by three Euler angles
and by the rotated Jacobi coordinates. In this work, we derive this form of the rotational and
internal Hamiltonian for an arbitrary non-relativistic closed many-body system (for H+

2 and its
isotopomers, see Ref. [2]). To the best of our knowledge, such derivation has not been performed
since the first publication of the Schrödinger equation [3]. In addition, we derive the general
expression for exact stationary wave functions for the mentioned arbitrary many-body system.

2. Model system

We consider a general non-relativistic closed many-body system without external and spin-
dependent interactions. It contains N ≥ 3 interacting particles with corresponding position
vectors Ri in the laboratory frame (X,Y,Z) and masses mi. The time-dependent wave function

Ψ({Ri}, t) of this system is the solution of the time-dependent Schrödinger equation i~Ψ̇ = ĤΨ,
where the time-independent Hamiltonian for two-body interactions (e.g. Coulomb interactions)
is equal to the sum of kinetic operators of the particles and two-body potentials Vij = Vji [4]:

Ĥ = −
~
2

2

N
∑

i=1

1

mi
∇2

Ri
+

N
∑

i,j=1

i6=j

Vij(|Ri −Rj |). (1)
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3. Translation of the center of mass

The motion of the system can be separated into the translational motion of the center of mass
and the rotational and internal motions of the system. Using Jacobi coordinates (cf. Ref. [4]),

rj = Rj+1 −
1

Mj

j
∑

i=1

miRi (j = 1, . . . , N), (2)

with Mj =
∑j

i=1
mi (i = 1, . . . , N) and RN+1 = 0, the total Hamiltonian (1) is rewritten as

Ĥ = Ĥtrans + Ĥrot,int, (3)

where the Hamiltonians for the translational and the rotational and internal motions are

Ĥtrans = −
~
2

2M
∇2

rcom
, (4)

Ĥrot,int = −
~
2

2

N−1
∑

i=1

1

µi
∇2

ri
+ 2

N
∑

i=1

N
∑

j=i+1

Vij

(∣

∣

∣

∣

∣

Mi−1

Mi
ri−1 −

Mj−1

Mj
rj−1 −

j−1
∑

k=i

mk+1

Mk+1

rk

∣

∣

∣

∣

∣

)

, (5)

and the reduced mass µi is defined as

µi =

(

1

Mi
+

1

mi+1

)−1

(i = 1, . . . , N − 1). (6)

Furthermore, the total mass of the system and the position vector of the center of mass are
defined as M = MN and rcom = −rN , respectively. We note that there is no mass-polarization
term in the Hamiltonian for the rotational and internal motions, as reported in Refs. [2, 5],
because we do not consider the nuclear center of mass but the total center of mass.

4. Rotation of the many-body system

The non-translational motion of the system can in turn be separated into the rotational motion
and the internal motion of the many-body system. We use Euler angles (Ψ,Θ,Φ) to describe
three independent rotations of the system in the standard-y-convention, i.e., the coordinate
system is rotated by the angle Ψ around the initial Z-axis, then by the angle Θ around the new
Y -axis, and finally by the angle Φ around the final Z-axis. The corresponding rotation matrices
are

RZ(Ψ) =





cosΨ sinΨ 0
− sinΨ cosΨ 0

0 0 1



 , (7)

RY ′(Θ) =





cosΘ 0 − sinΘ
0 1 0

sinΘ 0 cosΘ



 , (8)

RZ′′(Φ) =





cos Φ sinΦ 0
− sinΦ cos Φ 0

0 0 1



 . (9)

The coordinates of N particles in the rotated system (x, y, z) = (X ′′′, Y ′′′, Z ′′′) with reference to
the center of mass are calculated as

Qi = R(Ψ,Θ,Φ) (Ri − rcom) (i = 1, . . . , N), (10)
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where the total rotation matrix is

R(Ψ,Θ,Φ) = RZ′′(Φ)RY ′(Θ)RZ(Ψ). (11)

Furthermore, we define the rotated Jacobi coordinates in the rotated system (x, y, z) as

qj = Qj+1 −
1

Mj

j
∑

i=1

miQi = R(Ψ,Θ,Φ)rj (j = 1, . . . , N − 1). (12)

In order to fix the spatial orientation of the coordinates qj , we choose Euler angles (Ψ,Θ, Φ)
such that qN−2 = (0, 0, R)T with R ≥ 0, and qN−1 = (ρ, 0, ζ)T with ρ ≥ 0. These coordinates
for N = 3 are in accordance with the Jacobi coordinates of the nuclei and the electron of the
H+

2 molecule. The inverse transformation of Eq. (12) is

rj = RT (Ψ,Θ,Φ)qj (j = 1, . . . , N − 1), (13)

where RT (Ψ,Θ,Φ) is the transpose matrix of R(Ψ,Θ,Φ). Both sides of Eq. (13) have 3(N − 1)
independent coordinates, containing 3(N−2) rotated Jacobi coordinates in qi (i = 1, . . . , N−1)
and 3 Euler angles (Ψ,Θ,Φ). Then, the Hamiltonian for the rotational and internal motions (5)
is rewritten as

Ĥrot,int = −
~
2

2

N−3
∑

i=1

1

µi
∇2

qi
−

~
2

2µN−1

(

∂2

∂ρ2
+

1

ρ

∂

∂ρ
+

∂2

∂ζ2

)

−
~
2

2µN−2

1

R2

∂

∂R

(

R2 ∂

∂R

)

+
1

2µN−1

1

ρ2
Ĵ 2
N−1 z

+
1

4µN−2

1

R2





N−1
∑

i,j=1

(

Ĵi+Ĵj− + Ĵi−Ĵj+

)

+ ~
ζ

ρ

N−1
∑

i=1

(

Ĵi+ − Ĵi−

)





+2

N
∑

i=1

N
∑

j=i+1

Vij

(∣

∣

∣

∣

∣

Mi−1

Mi
qi−1 −

Mj−1

Mj
qj−1 −

j−1
∑

k=i

mk+1

Mk+1

qk

∣

∣

∣

∣

∣

)

. (14)

For the H+
2 molecule (N = 3), this Hamiltonian is similar to that of Ref. [2]. In Eq. (14), the

angular momentum operators are defined as

Ĵi± =















e±iφi

(

ζi
ρi
Ĵiz ± ~

(

ρi
∂
∂ζi

− ζi
∂
∂ρi

))

(i = 1, . . . , N − 3)

−i~e∓iΦ
(

− 1
sinΘ

∂
∂Ψ

± i ∂
∂Θ

+ cotΘ ∂
∂Φ

)

(i = N − 2)
ζ
ρ
ĴN−1 z ± ~

(

ρ ∂
∂ζ

− ζ ∂
∂ρ

)

(i = N − 1)

, (15)

Ĵiz =











−i~ ∂
∂φi

(i = 1, . . . , N − 3)

−i~ ∂
∂Φ

(i = N − 2)

−i~ ∂
∂Φ

−
∑N−3

j=1
Ĵjz (i = N − 1)

, (16)

and ρi, ζi, φi are the cylindrical coordinates of qi (i = 1, . . . , N − 3). The Hamiltonian Ĥrot,int

commutes with Ĵ2 and ĴZ = −i~ ∂
∂Ψ

but not with Ĵiz (i = 1, . . . , N−1). On the other hand, Ĵ2,

ĴZ , Ĵiz (i = 1, . . . , N − 1) commute among each other. The normalized angular eigenfunctions
of these N + 1 operators are written as

DJ∗
M,T,T1,...,TN−3

(Ψ,Θ,Φ, φ1, . . . , φN−3) =

√

2J + 1

8π2 (2π)N−3
DJ∗

M,T (Ψ,Θ,Φ)

N−3
∏

i=1

eiTiφi , (17)

where DJ∗
M,T (Ψ,Θ,Φ) is the complex conjugate of the Wigner D-matrix [6]. The quantum

numbers for rotation are J ∈ N0, M,T ∈ {−J,−J + 1, . . . , J − 1, J}, Ti ∈ Z (i = 1, . . . , N − 3).
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5. Stationary wave functions of the many-body system

The Hamiltonian Ĥrot,int commutes not only with Ĵ2 and ĴZ but also with the parity operator Π̂
with respect to the center of mass. The solutions of the time-independent Schrödinger equation
for the rotational and internal motions,

Ĥrot,intΨJ,M,Π,n(Ψ,Θ,Φ, R, ρ, ζ,q1, . . . ,qN−3) (18)

= EJ,M,Π,nΨJ,M,Π,n(Ψ,Θ,Φ, R, ρ, ζ,q1, . . . ,qN−3),

are the stationary wave functions ΨJ,M,Π,n and the corresponding eigenenergies EJ,M,Π,n that
depend on quantum numbers J ∈ N0, M ∈ {−J,−J +1, . . . , J −1, J} for the rotational motion,
n ∈ N0 for the internal motion, and Π ∈ {−1,+1} for the parity of the many-body system.

Since the Hamiltonian Hrot,int does not commute with Ĵiz (i = 1, . . . , N − 1), the stationary
wave functions ΨJ,M,Π,n can be expanded as

ΨJ,M,Π,n(Ψ,Θ,Φ, R, ρ, ζ,q1, . . . ,qN−3)

=

J
∑

T=−J

∑

{Ti}

DJ∗
M,T,{Ti}

(Ψ,Θ,Φ, {φi})ψJ,M,T,{Ti},n(R, ρ, ζ, {ρi}, {ζi}), (19)

where ψJ,M,T,{Ti},n(R, ρ, ζ, {ρi}, {ζi}) are the real and even wavefunctions. Using the parity
relation for the Wigner D-matrix,

Π̂DJ∗
M,T (Ψ,Θ,Φ) = (−1)J+TDJ∗

M,−T (Ψ,Θ,Φ), (20)

we are able to show that the following relation must be satisfied:

ψJ,M,−T,{−Ti},n(R, ρ, ζ, {ρi}, {ζi}) = (−1)J+TΠψJ,M,T,{Ti},n(R, ρ, ζ, {ρi}, {ζi}).

(21)

Finally, with

ψ̃J,M,T,{Ti},n(R, ρ, ζ, {ρi}, {ζi}) =

{

1
2
ψJ,M,0,{Ti},n(R, ρ, ζ, {ρi}, {ζi}) T = 0
ψJ,M,T,{Ti},n(R, ρ, ζ, {ρi}, {ζi}) T 6= 0

, (22)

we obtain the general expression for the stationary wave functions as

ΨJ,M,Π,n(Ψ,Θ,Φ, R, ρ, ζ, {qi})

=

J
∑

T=0

∑

{Ti}

(

DJ∗
M,T,{Ti}

(Ψ,Θ,Φ, {φi}) + (−1)J+TΠDJ∗
M,−T,{−Ti}

(Ψ,Θ,Φ, {φi})
)

(23)

ψ̃J,M,T,{Ti},n(R, ρ, ζ, {ρi}, {ζi}).

6. Conclusion

We have derived the exact rotational and internal Hamiltonian for an arbitrary non-relativistic
closed many-body system and the corresponding stationary wave functions, where the rotational
and internal motions of the system can be described separately by three Euler angles and by
the rotated Jacobi coordinates.
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