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Abstract. Without applying Born-Oppenheimer approximation, the non-relativistic Hamil-
tonian can be separated into Hamiltonians for the translation of the center of mass and for
the rotational and internal motions of the closed many-body system. This exact rotational and
internal Hamiltonian can be expressed in terms of three Euler angles for three independent
rotations of the system and the rotated Jacobi coordinates for the internal motions.

1. Introduction

In the realm of non-relativistic quantum mechanics of molecules, the original form of the
total Hamiltonian can be separated into Hamiltonians for translational and non-translational
motions. One usually first applies Born-Oppenheimer approximation (BOA) to separate the
non-translational motion into the motions of electrons and nuclei and then separate the nuclear
motions into the rotational and vibrational motions [1]. But for a closed many-body system
consisting of arbitrary interacting particles (including muons for example), where BOA cannot
be applied, the Hamiltonian cannot be separated into Hamiltonians of specific particle sorts. In
this case, one can still rewrite the non-translational Hamiltonian specifically for the rotational
and internal motions of the system, that can be described separately by three Euler angles
and by the rotated Jacobi coordinates. In this work, we derive this form of the rotational and
internal Hamiltonian for an arbitrary non-relativistic closed many-body system (for H;r and its
isotopomers, see Ref. [2]). To the best of our knowledge, such derivation has not been performed
since the first publication of the Schrodinger equation [3]. In addition, we derive the general
expression for exact stationary wave functions for the mentioned arbitrary many-body system.

2. Model system

We consider a general non-relativistic closed many-body system without external and spin-
dependent interactions. It contains N > 3 interacting particles with corresponding position
vectors R; in the laboratory frame (X,Y, Z) and masses m;. The time-dependent wave function
W({R;},t) of this system is the solution of the time-dependent Schrédinger equation ih¥ = HW,
where the time-independent Hamiltonian for two-body interactions (e.g. Coulomb interactions)
is equal to the sum of kinetic operators of the particles and two-body potentials V;; = Vj; [4]:

R 52 N 1, N
H = _EZ VR, * > Vii(Ri — Ry)). (1)
i=1 i,j=1

i#j
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3. Translation of the center of mass
The motion of the system can be separated into the translational motion of the center of mass
and the rotational and internal motions of the system. Using Jacobi coordinates (cf. Ref. [4]),

I‘j = ]+1 Zml 7 (]:LaN)a (2)

with M; = Zgzl m; (i =1,...,N) and Ry41 = 0, the total Hamiltonian (1) is rewritten as

H = ﬁtrans + ﬁrot,inta (3)

where the Hamiltonians for the translational and the rotational and internal motions are

. R _,
Hirans = — M Vrcom’ (4)
B2 N-1 N N Jj—1
R M;_4 M;_ 4 Mgt
Hyotint = —=- E V ;12 E E Vij ('—N ri]— o — _7\]{ rj1— E ARLEE (5)
=1 j—it1 ‘ J k=i =kl

and the reduced mass p; is defined as

M;  miq

wi = <i+ ! >1 (i=1,...,N—1). (6)

Furthermore, the total mass of the system and the position vector of the center of mass are
defined as M = My and reom = —rp, respectively. We note that there is no mass-polarization
term in the Hamiltonian for the rotational and internal motions, as reported in Refs. [2, 5],
because we do not consider the nuclear center of mass but the total center of mass.

4. Rotation of the many-body system

The non-translational motion of the system can in turn be separated into the rotational motion
and the internal motion of the many-body system. We use Euler angles (¥, 0, ®) to describe
three independent rotations of the system in the standard-y-convention, i.e., the coordinate
system is rotated by the angle ¥ around the initial Z-axis, then by the angle © around the new
Y-axis, and finally by the angle ® around the final Z-axis. The corresponding rotation matrices
are

cosV sin¥ 0

Rz(¥) = —sin ¥ cos\I/ 0 , (7)
0
cos © 0 —sm@

Ry/(©) = 0
sin © 0 cos@

cos® sind O )
= (

(8)

Ryn(®) = —sin ® cos<I> 0
0

9)

The coordinates of N particles in the rotated system (x,y, z "Y' Z") with reference to

the center of mass are calculated as

Q; = R(V,0,9)(R;—reom) (t=1,...,N), (10)
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where the total rotation matrix is
R(V,0,9) = Rz/(P)Ry/(O)Rz(D). (11)

Furthermore, we define the rotated Jacobi coordinates in the rotated system (zx,y, z) as

1 < 4
q = Qj+1—ﬁjz:miQi = R(¥,0,d)r; (j=1,...,N—1). (12)

In order to fix the spatial orientation of the coordinates q;, we choose Euler angles (¥, 0, ®)
such that qy_» = (0,0, R)T with R > 0, and qx_1 = (p,0,¢)” with p > 0. These coordinates
for N = 3 are in accordance with the Jacobi coordinates of the nuclei and the electron of the
H3 molecule. The inverse transformation of Eq. (12) is

rj = RT(¥,0,9)q; (j=1,...,N—1),

where RT (U, ©, ®) is the transpose matrix of R(¥, 0, ®). Both sides of Eq. (13) have 3(N 1
independent coordinates, containing 3(N — 2) rotated Jacobi coordinates in q; (i = 1,. -1
and 3 Euler angles (¥, ©, ®). Then, the Hamiltonian for the rotational and internal motlons (5
is rewritten as

13

—~

)
)
)
)

72 N-3 2 2 2
. K 2 10 0
Hro in - T ) a5 —a Y
b Z Va. - 2uN—1 <0p2 oot 3CZ>
h2 10 (5,0 11 4
2un_o R20R ( @> " 2un—1 0 In-1z
1 1 N-—1 <_N
T ; (i i+ ji_Jﬁ) P> (J: - 7:-)
Mi41
+22 Z Vij ( S g ZMkH ) (14)
=1 j=i+1

For the Hj molecule (N = 3), this Hamiltonian is similar to that of Ref. [2]. In Eq. (14), the
angular momentum operators are defined as

( id; (S 7 .0 .0 ) =

A eEid <;‘7zzih(ﬂzy—ﬁza—m>> (i=1,...,N—=3)

Jix = —ihe™™® (~ gy £igg T otOF) (i=N-2) ’ (15)
¢ 4 [} L
—jN—lzih<pa_C_Ca_p) (i=N-1)

) ( m% (i=1,...,N —3)

Jiw =  —ih (i=N—2) , (16)
’Lh a Z u7]z (Z:N_l)

and p;, (;, ¢; are the cylindrical coordinates of q; (z =1,...,N — 3). The Hamiltonian f[wt’im
commutes with J2 and J = —zh 7 but not with T (1=1,. —1). On the other hand, jz,

Jz, Jis (i=1,...,N—1) commute among each other. The normalized angular eigenfunctions
of these N 4 1 operators are written as

2] 41 =
DZ{ZT,Tl,___,TN_S(an@’(I),gbl" .. ’¢N73) = ﬁDZ{ZT(\I’,@,@) H elT¢¢i’ (17)
82 (2m) Pty
where DﬁT(\I/,G),CD) is the complex conjugate of the Wigner D-matrix [6]. The quantum
numbers for rotation are J € No, M, T e {—J,—J+1,...,.J-1,J}, T, €Z (i = , N —3).
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5. Stationary wave functions of the many-body system

The Hamiltonian Hyo int commutes not only with J2 and J but also with the parity operator II
with respect to the center of mass. The solutions of the time-independent Schrodinger equation
for the rotational and internal motions,

ﬁrot,int\IIJ,M,H,n(\I]a 95 q)’ Ra P Ca q1,---, qN*3) (18)

= EJ,M,H,n\I/J,M,H,n(\I/7 67 (ba R7 P, Ca di,-- -, qN—3)7
are the stationary wave functions ¥/, and the corresponding eigenenergies Ej s, that
depend on quantum numbers J € Ng, M € {—J,—J+1,...,J —1,J} for the rotational motion,
n € Ny for the internal motion, and IT € {—1,41} for the parity of the many-body system.

Since the Hamiltonian H,¢int does not commute with jiz (i =1,...,N — 1), the stationary
wave functions W ;a7 11, can be expanded as

Uivnn(V,0,2, R, p,¢,q1,...,dN-3)
J

= Z ZDﬁT,{Ti}(‘I’,@,‘1%{¢z‘})¢J,M,T,{Ti},n(R,,0,C,{Pz‘},{Cz}), (19)

T=-J{T:}

where Va7 imyn (R, 0, ¢ {pi}, {¢i}) are the real and even wavefunctions. Using the parity
relation for the Wigner D-matrix,

IDifr(¥,0,2) = (-1)""Dij_+(v,0,0), (20)
we are able to show that the following relation must be satisfied:

Yottt (Bp: ot {GY) = (DT 0z iy (R 0, ¢ {pi}, (G-
(21)

Finally, with

7, 5 (B0, CApi s {G T=0
brarnmyaRo CAnk oy = { 3tmeamanlbec ol e TE0 o)

we obtain the general expression for the stationary wave functions as
‘I’JMHn(‘I’ 0,2, R, p,(, {a:})

Z Z <DMT{T} w7@7¢7{¢i}) ( )J+THDM -T{- T}(\I}797q)7{¢i})> (23)

T=0{T;}

&J,M,T,{Ti},n(Ra P Ca {pl}7 {Cl})

6. Conclusion

We have derived the exact rotational and internal Hamiltonian for an arbitrary non-relativistic
closed many-body system and the corresponding stationary wave functions, where the rotational
and internal motions of the system can be described separately by three Euler angles and by
the rotated Jacobi coordinates.
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