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Abstract. The S=1/2 kagome-lattice antiferromagnet is investigated using the numerical
diagonalization up to the 42-spin cluster. The analysis of the field derivative of the magnetization
at the zero magnetization indicates that the magnetic excitation ot the system is gapless. It is
consistent with our previous finite-scaling analysis of the spin gap.

1. Introduction
The S = 1/2 kagome-lattice antiferromagnet is one of interesting frustrated quantum
spin systems. The system is supposed to exhibit the quantum spin liquid in the ground
state[l, 2, 3,4, 5,6, 7, 8,9, 10, 11, 12], which was proposed as an origin of the high-temperature
superconductivity[13]. Experimental studies to observe a novel spin liquid phase have been
accelerated, since discoveries of several candidate materials; the herbertsmithite[14, 15], the
volborthite[16, 17] and the vesignieite[18] for the kagome lattice. The spin gap is an important
physical quantity to characterize the spin liquid behavior. Whether the S = 1/2 kagome-lattice
antiferromagnet is gapless or has a finite spin gap, is still an unsolved issue, because any recently
developed numerical calculation methods are not enough to determine it in the thermodynamic
limit. The quantum Monte Carlo (QMC) simulation has a so-called negative sign problem due
to the frustration. The density matrix renormalization group (DMRG) method is not good
because of the two-dimensionality of the system. Our large-scale numerical diagonalization up
to the 42-spin cluster and a finite-size scaling analysis indicated that the S = 1/2 kagome-
lattice antiferromagnet is gapless in the thermodynamic limit[19]. It is consistent with the U(1)
Dirac spin liquid theory of the kagome-lattice antiferromagnet[8]. It was also supported by a
variational method[20, 21]. On the other hand, some DMRG calculations[22, 23, 24| indicated a
finite spin gap in the thermodynamic limit. Although the estimated magnitude of the spin gap
is dependent on the method, they are qualitatively consistent with the gapped Zs topological
spin liquid theory[1]. It was also supported by a numerical diagonalization study[25]. Although
the recent neutron scattering experiment of the single crystal of the herbertsmithite[26, 27]
suggested that the system is gapless, the spin gap issue of the kagome-lattice antiferromagnet is
still theoretically controversial.

In this paper, we analyze the field derivative of the magnetization at the zero magnetization,
using the numerical diagonalization up to the 42-spin cluster, to determine whether the kagome-
lattice antiferromagnet is gapless or gapped.
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2. Model and numerical exact diagonalization
Now we examine the spin gap issue of the S = 1/2 kagome lattice antiferromagnet. The
Hamiltonian is given by

H= S; - Sja (1)
(1,3

where (7, j) means all the nearest neighbor pairs on the kagome lattice. For an N-site system,
the lowest energy of H in the subspace where >°; S¥ = M is denoted by E(N,M). Using the
numerical exact diagonalization, we have calculated all the values of E(N, M) available for the
clusters up to N =42 under the periodic boundary condition. The largest dimension of the
N = 42 system is 538,257,874,440. To treat such huge matrices in computers, we have carried
out parallel calculations using the MPI-parallelized code, which was originally developed in the
study of the Haldane-gap issue[28]. Note especially that calculations for the N =42 cluster
require the use of K computer, Kobe, Japan.

3. Field derivative of the magnetization
The effect of the applied external magnetic field h is discribed by the Zeeman energy term

Hz==h)_S; (2)
J
The energy of H per site in the thermodynamic limit is defined as
E(N,M
(]\’7) ~ €(m) (N — ) (3)

where m = M/(SN) is the magnetization normalized by the saturated magnetization SN. If
we assume €(m) is an analytic function of m, the spin excitation energy would become

E(N,M +1)— E(N,M) ~ % <e’(m) + %e”(m)NiS + - ) (4)

Thus, this equation gives the quantity corresponding to the width of the magnetization plateau
at m as follows,

1
Ns? ©)
Minimizing the energy of the total Hamiltonian H + Hz, the ground state magnetization curve
is derived by

(E(N,M + 1) — E(N, M)) — (B(N, M) — E(N, M — 1)) ~ €'(m)

h=¢€(m)/S (6)
The field derivative of the magnetization is defined as
dm S
XY= T Tm) 0

If we assume x # 0, namely €’(m) is finite, the magnetization plateau at m would vanish in
the thermodynamic limit, because of (5). Thus a necessary condition for the existence of a
magnetization plateau at m is x = 0 in the thermodynamic limit. Now we apply this argument
for the spin gap. We should examine the case of m = 0. In this case, the equation (5) can be
rewritten as

2AN ~ €'(0)

NSz (8)
where Ay = E(N,1)— E(N,0) is the spin gap for an N-spin cluster. Thus a necessary condition
of the finite spin gap would be x = 0 at m = 0 in the thermodynamic limit.

In the next section, we confirm the validity of this condition for typical gapless and gapped
spin systems.



International Workshop on Itinerant-Electron Magnetism IOP Publishing
IOP Conlf. Series: Journal of Physics: Conf. Series 868 (2017) 012006 doi:10.1088/1742-6596/868/1/012006

o
Q

—
—(O—O—"C0O—"~0—

Js

Figure 1. Square-lattice antiferromagnet with the dimerization. The green and black lines
denote bonds of interactions J; and Ja, respectively. The case of Jy/J; = 1 corresponds to the
square-lattice antiferromagnet without the dimerization.

4. Square-lattice Heisenberg antiferromagnet with and without dimerization

As typical gapless and gapped spin systems, we consider the S = 1/2 square-lattice Heisenberg
antiferromagnet, and the one with the dimerization, respectively. These models are shown in
Figure 1. The ratio of the two antiferromagnetic exchange interactions is defined as oo = Jy/.Jp.
The previous QMC simulation study[29] revealed that the critical ratio is a. = 0.52337(3) and
the system is gapless for a > «,, while gapped for a < .. Using the numerical diagonalization,
we investigate the two typical cases; Jo/J; = 1 (gapless) and Jo/J; = 0.2 (gapped). The
ground state magnetization curves for Jy/J; = 1 and Jy/J; = 0.2 are shown in Figures 2 and
3, respectively. The former seems gapless, while the latter clearly looks gapped at m = 0. The
field derivatives of the magnetization y for Jo/J; = 1 and Jy/J; = 0.2 are shown in Figures 4
and 5, respectively. In both cases the system size dependence of x at m = 0 looks small. We can
easily expect that x is finite for Jo/J; = 1, while x = 0 for Jo/J; = 0.2 in the thermodynamic
limit. x at m = 0 plotted versus 1/N in Figure 6 for Jy/J; = 1 and Figure 7 for Jo/J; = 0.2
clearly confirms these features. The result justifies the argument in the previous section that x
is finite for the gapless system, while y = 0 for the gapped one in the thermodynamic limit.

5. Kagome lattice antiferromagnet

In this section, we investigate the field derivative of the magnetization y for the S = 1/2 kagome-
lattice antiferromagnet. The ground state magnetization curves for N=36, 39 and 42 are shown
in Figure 8; the results for N=39 and 42 were originally presented in [30] and [31], respectively.
From the magnetization curves, it is difficult to determine whether the system is gapless or
gapped. Next we show the magnetization dependence of the calculated x for N=42, 39 and 36
in Figure 9. The behaviors around m = 0 are magnified in Figure 10. At least for N=36 and 42,
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Figure 2. Magnetization curves of the square-lattice antiferromagnet for several system sizes
up to N = 36. The results for N = 8, 12, 16, 20, 24, 28, and 32 are denoted by black, red,
dark-blue, green, yellow, violet, light-blue lines without symbols, respectively; the result for
N = 36 is denoted by black lines with circles.

Figure 3. Magnetization curves of the square-lattice antiferromagnet with the dimerization of
Jo/J1 = 0.2 for several system sizes up to N = 36. Lines and symbles are the same as in Fig. 2.
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Figure 4. Magnetization dependence of y of the square-lattice antiferromagnet for several
system sizes. The results for N =36, 28, 20 are denoted by black circles, violet inversed triangles,

and green squares, respectively.
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Figure 5. Magnetization dependence of x of the square-lattice antiferromagnet with the
dimerization of Jy/J; = 0.2 for several system sizes. Lines and symbles are the same as in

Fig. 4.
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Figure 6. y plotted versus 1/N for the square-lattice antiferromagnet (J2/J; = 1). The results
are presented for the cases up to N = 36. Closed symbols denote the results for the cases when
the shape of the finite-size clusters are squares. When a finite-size cluster for a given N cannot
form a square even if the square is tilted, on the other hand, the cluster forms a parallelogram:;
the results are given by open symbols. The extrapolated value in the thermodynamic limit seems
to be finite (x # 0).

the size dependence of x at m = 0 is very small. x at m = 0 is plotted versus 1/N for N=42, 36,
30, 24, 18, 12 in Figure 11. Although the system size dependence exhibits a slight oscillation,
it clearly indicates that x at m = 0 is still finite in the thermodynamic limit. Thus the system
does not meet the condition for the finite spin gap. It should be one of strong evidences to
justify that the S = 1/2 kagome-lattice antiferromagnet is gapless.

6. Conclusion

The spin gap issue of the kagome-lattice antiferromagnet is investigated using the numerical
diagonalization up to N = 42. The analysis of the field derivative of the magnetization y gives
one of strong evidences of the gapless feature.
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Figure 7. x plotted versus 1/N for the dimerized square-lattice antiferromagnet (J3/.J; = 0.2).
The extrapolated value in the thermodynamic limit seems to be zero. Symbols are the same as

in Fig. 6.
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Figure 8. Magnetization curves of the kagome-lattice antiferromagnet for N =36, 39 and 42.
The results for NV =36 and 39 are denoted by green and black lines, respectively; that for N =42

is denoted by red lines with squares.
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Figure 9. Magnetization dependence of x of the kagome-lattice antiferromagnet for N =36, 39
and 42. The results for N =36, 39, and 42 are denoted by green diamonds, black circles, and
red squares, respectively.
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Figure 10. Magnetization dependence of x of the kagome-lattice antiferromagnet for N =36,
39 and 42 around m = 0. Symbols are the same as in Fig. 9.
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Figure 11. x plotted versus 1/N for the kagome-lattice antiferromagnet. Closed symbols
denote the results for the cases when the shape of the finite-size clusters are the rhombus with
an interior angle m/3. When a finite-size cluster for a given N cannot form the same rhombus
even if the rhombus is tilted, on the other hand, the cluster forms a parallelogram; the results
are given by open symbols. The extrapolated value in the thermodynamic limit seems to be

finite (x # 0).
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