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Abstract. In spite of the successful explanation of the Curie-Weiss law temperature
dependence of the magnetic susceptibility, there exist some difficulties in the conventional spin
fluctuation theory based on the expansion in powers of fluctuation amplitudes. They are now
known to originate from the severe restriction on the magnetization curve. In this review, we
show another approach based on the new ideas, i.e. the local spin amplitude conservation and
the simultaneous treatment of temperature and external magnetic field dependences. We show
various interesting magnetic properties are derived based on them and they are compared with
experiments.

1. Introduction
Significant roles of spin fluctuations on various magnetic properties of itinerant electron magnets
have been recognized since the publication of the paper by Moriya and Kawabata [1, 2] in 1973.
The theory, now known as the SCR theory, has been successful in deriving the observed Curie-
Weiss law temperature dependence of magnetic susceptibility of weak itinerant ferromagnets,
such as ZrZn2, Sc3In, and MnSi. Experimentally, the presence of spin fluctuations in these
magnets has been also suggested from the enhancement of the temperature linear coefficient of
the specific heat at low temperatures, and the direct observation of the fluctuation amplitudes
by using the polarized neutron scattering measurements. Around 1980, the theory has been
regarded to be well established except for a trivial problem [3], i.e. the spontaneous magnetic
moment does not vanish at the critical point with increasing temperature.

The purpose of this article is to make a brief review on the development of spin fluctuation
theories, starting from the middle of 1980 in order to overcome the above difficulty of the SCR
theory. It was found at that time [4] that it originates from the basic assumption of the theory, i.e.
the linearity of the Arrott plot of the magnetization curve satisfied independent of temperature.
At the same time, it seems better to rely on another approach, and new theory was proposed as
an alternative candidate. It is based on the spin amplitude conservation and the non negligible
effects of the zero-point spin fluctuations [4, 5]. As the consequence, no assumption on the
magnetization curve becomes necessary between the external magnetic field H and the induced
magnetization M . It was also quite successful in predicting various magnetic properties, for
instance, the critical magnetic isotherm, H/M ∝M4, in contradiction to the assumption of the
SCR theory.
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In section 2, three theories of itinerant electron magnetism and the magnetic properties
predicted by them around the critical temperature are compared with each other. Section
3 is devoted to the explanation of spin fluctuation theory based on the local spin amplitude
conservation. In section 4, theoretically derived magnetic properties are compared with
experiments. Finally, a brief summary is presented in the last section.

2. Brief comparison of the consequences of three theories of itinerant magnetism
As with the other thermodynamic properties, magnetic properties are derived by the following
free energy as a function of magnetization M and temperature T .

F (M,T ) = F (0, T ) +
1

2
a(T )M2 +

1

4
b(T )M4 +

1

6
c(T )M6 + · · · . (1)

For instance, the magnetic isotherm, i.e. the relation between the external magnetic field H and
its induced magnetization M , is given by

H =
∂F (M,T )

∂M
= a(T )M + b(T )M3 + c(T )M5 + · · · . (2)

The inverses of magnetic susceptibilities, χ−1(T ) and χ−1
z (T ), are also defined by

χ−1(T ) =
H

M
= a(T ) + b(T )M2 + c(T )M4 + · · · ,

χ−1
z (T ) =

∂H

∂M
= a(T ) + 3b(T )M2 + 5c(T )M4 + · · · ,

(3)

corresponding to the applied magnetic field perpendicular and parallel direction to the static
induced magnetic moment M in z-direction. The M -dependent terms in the above right hand
side are neglected in the weak field limit. In the ordered phase below TC , (3) is rewritten in the
form,

H

M
= b(T )

[
M2 −M2

0 (T )
]

+ · · · , M2
0 (T ) = −a(T )

b(T )
, (4)

where M0(T ) is the spontaneous magnetic moment.
In the following, we show how these magnetic properties are treated based on the three

different theories of itinerant electron magnetism.

2.1. Stoner-Wohlfarth theory
This theory is based on the band theoretical idea. Therefore, the temperature dependences of
various magnetic properties originate from that of the Fermi distribution function. According
to this theory, the temperature dependence of the inverse of magnetic susceptibility, χ−1(T ),
and the spontaneous magnetization squared, M2

0 (T ), are given by

χ−1(T ) ∝ (T 2 − T 2
C), M2

0 (T ) ∝ (T 2
C − T 2). (5)

Around the critical temperature TC , they are also rewritten as follows.

χ−1(T ) ∝ (T − TC)γ , M2
0 (T ) ∝ (TC − T )β, (6)

where γ = 1 and β = 1/2. In the same way, the magnetization curve at the critical point,
T = TC , is given by H ∝ M3, i.e. M ∝ H1/δ with δ = 3, because a(TC) = 0 is satisfied in (3).
It means that the scaling law relation, γ = β(δ−1), of the theory of phase transition is satisfied.
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2.2. SCR theory of spin fluctuations
In contrast to the Stoner-Wohlfarth theory, the effect of thermal spin fluctuations is included in
the free energy in this theory. Consequently, the temperature dependence of a(T ) in (3) is rather
dominated by the effect of spin fluctuations. Therefore, the following temperature dependences
of χ(T ) and M0(T ) have been derived around the critical point.

χ−1(T ) ∝ (T − TC)2, M0(T ) ∝ (TC − T )1/2. (7)

Their critical indexes are given by β = 2 and γ = 1/2, respectively. On the other hand, the
second coefficient b(T ) in the right hand side of (2) is assumed to be constant. Higher order
terms than this M3 term are also neglected in this theory. The exponent of the critical magnetic
isotherm, M ∝ H1/δ, is given by δ = 3, just as in the Stoner-Wohlfarth theory. Therefore, the
scaling law relation between these indexes is violated.

The above argument clearly indicates the necessity that the effect of spin fluctuations on the
magnetization curve has to be taken into account. The exponent δ = 3 between H and M should
be modified, and rather H ∝ M5 is satisfied in contradiction to b(T ) > 0 at the critical point.
It also means that the linearity of the Arrott plot of the magnetization curve is not generally
satisfied.

2.3. Spin fluctuation theory based on TAC and GC
This theory has been proposed to overcome the difficulty of the SCR theory. As for the
temperature dependence, the same dependences as (7) derived by the SCR theory are satisfied.
However, the different critical exponent δ = 5 is obtained for the magnetic isotherm, M ∝ H1/δ.
The scaling law relation is therefore satisfied in this case.

In summary, both the temperature and the magnetic field dependence of spin fluctuation
amplitudes have to be treated simultaneously in order to satisfy the scaling law relation. In
other words, temperature dependence of the magnetization curve is not so simple, contrary to
the expectations of the SCR theory.

3. Development beyond the SCR Theory
In this section, after the origin of the difficulty of the SCR theory is briefly explained, another
approach based on the ideas of TAC and GC is presented.

3.1. Difficulty of the SCR theory
As shown in (2) and (3), the magnetization curve, the relation between M and H, is generally
given by

H = a(T )M + b(T )M3 + · · · , ∴
H

M
= a(T ) + b(T )M2 + · · · . (8)

In terms of above equations, the assumption of the SCR theory is stated as follows.

(i) The temperature dependence of the coefficient b(T ) in (8) is neglected.

(ii) The higher order expansions in powers of M than those explicitly presented in (8) are
assumed to be absent or neglected.

Main interest of this theory is focused on the first coefficient a(T ).
As will be shown later, the thermal spin fluctuation amplitudes is regarded as a function of

temperature T , and the magnetic susceptibilities, i.e. χ(M,T ) and χz(M,T ) of the perpendicular
and the parallel components with respect to the static magnetic moment. Around the critical

point, they are dominated by the dependence proportional to χ−1/2(M,T ) and χ
−1/2
z (M,T ).

Then the M2 term in χ−1
z (M,T ) ' χ−1(M,T ) + 2bM2 → 2bM2 in the limit of T → TC , gives

rise to the M linear term in the thermal fluctuation amplitude. It is known that this M -linear
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term is the origin of the non vanishing spontaneous magnetization at T = TC . In other words,
the difficulty is closely related to the temperature independent assumption of b(T ) in this theory.

3.2. Theory based on the spin amplitude conservation
In order to overcome the difficulties of the SCR theory, another spin fluctuation theory was
proposed [4, 5]. It is based on the following two basic ideas [6].

(i) The total spin amplitude conservation (TAC)
It means that the average of the local spin amplitude squared on each magnetic site remains
constant independent of temperature, and whether in the presence or absence of the external
magnetic field.

(ii) The global consistency (GC) in the H-M space
No assumption is made on the magnetization curve in this theory, in contrast to (8) with
T -independent b(T ) in the SCR theory. To find the magnetization curve rather becomes of
the target of this theory. This is what the global consistency (GC) means.

Thermal average of spin amplitude squared on each magnetic atom or ion is generally written
as the sum of three components,

〈S2
loc〉 = σ2 + 〈δS2

loc〉T + 〈δS2
loc〉Z , (9)

where Sloc is the local spin operator in units of 2µB and the first term in the right hand
side represents the spontaneous local spin amplitude squared. The last two terms represent
the averages of thermal and zero-point fluctuation amplitudes. In the paramagnetic phase for
simplicity, according to the fluctuation-dissipation theorem of statistical mechanics, the equal-
time autocorrelation of the local spin amplitude of the left hand side of (9) is represented by

〈S2
loc〉 =

3

N2
0

∑
q

∫ ∞
0

dω

π
coth(ω/2kBT )Imχ(q, ω). (10)

The imaginary part of the dynamical magnetic susceptibility in units of (2µB)2 in the above
integrand is given in the following double Lorentzian form:

Imχ(q, ω) = χ(q, 0)
ωΓq

ω2 + Γ2
q

, χ(q, 0) = χ(0, 0)
κ2

q2 + κ2
,

Γq = Γ0q(κ
2 + q2) = 2πT0x(y + x2), y =

κ2

q2
B

, x =
q

qB
,

T0 = Γ0q
3
B/2π,

N0

χ(qB, 0)
=
N0(q2

B + κ2)

κ2χ(0, 0)
=
N0(1 + y)

yχ(0, 0)
' 2TA.

(11)

The number of magnetic atoms, the correlation wave-number squared, and the damping constant
are, respectively, denoted by N0, κ2, and Γq. The zone boundary wave-number is denoted by
qB. As the measures of the distribution widths of fluctuation amplitudes in frequency and wave-
vector space, two temperature scales, T0 and TA, are also introduced. From the decomposition,
coth(ω/2kBT ) = 1+2n(ω), the total amplitude in (10) is split into the thermal and the zero-point
amplitudes as given by

〈S2
loc〉T (y, t) =

6

N2
0

∑
q

∫ ∞
0

dω

π
n(ω)Imχ(q, ω) =

9T0

TA
A(y, T ),

A(y, t) =

∫ 1

0
dxx3

[
log u− 1

2u
− ψ(u)

]
, u = x(y + x2)/t,

〈S2
loc〉Z (y) =

3

N2
0

∑
q

∫ ∞
0

dω

π
Imχ(q, ω) = 〈S2

loc〉Z (0)− 9T0

TA
c y,

(12)
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where ψ(u) in the integrand of the above second line represents the digamma function. Both
amplitudes depend on the parameter y through its dependence of χ(q, 0) and Γq in (11). The
thermal amplitude has an extra temperature dependence through the Bose distribution function
n(ω).

3.3. Basic Equation for magnetic properties
The condition of the local spin amplitude conservation is regarded as the basic equation of the
TAC-GC theory. If we compare the condition of (9) at any temperature and under the external
magnetic field with the reference condition at the critical point with no external magnetic field,
the following equation is derived by substituting (12).

2A(y, t) +A(yz, t)− c(2y + yz) + λσ2 = 3A(0, tc), λ =
TA
3T0

,

yz(σ, t) = y(σ, t) + σ
∂y(σ, t)

∂σ
,

(13)

The inverses of the perpendicular and the parallel components of magnetic susceptibilities are
denoted by y ∝ H/M and yz ∝ ∂H/∂M , respectively, with respect to the direction of the
spontaneous moment. The spin moment per magnetic atom is denoted by σ in units of 2µB.
The important point of (13) is that it is regarded as an ordinary differential equation of y(σ, t)
as the function of σ. Therefore the σ dependence of y(σ, t) is obtained by solving this equation.
There is also no need to restrict the highest power of y(σ, t) as a function of σ. The σ-dependence
of y(σ, t) is determined in this way by the global condition (GC) of (13) over the wide range of
the variable σ.

In the absence of spontaneous or induced magnetic moment by the external magnetic field,
both yz = y and σ = 0 are satisfied simultaneously. Then the temperature dependence of the
magnetic susceptibility above Tc as well as the spontaneous magnetic moment below Tc are also
obtained by solving the equation.

4. Magnetic Properties in More Detail
Let us show in this section, various interesting magnetic properties are derived by solving our
basic equation (13). They are classified into two groups, i.e. properties that depend on external
magnetic field or temperature.

4.1. Magnetic Field dependent properties
First of all, we show how magnetic isotherms in the ground state and at the critical temperature
are derived as the solutions of (13). These results are also compared with experiments.

4.1.1. Magnetization curve at T = 0 determined by Zero-Point Spin Fluctuations In the ground
state, the following differential equation is satisfied, because of the absence of the thermal spin
fluctuation amplitudes in (13).

−c(2y + yz) + λσ2 = 3A(0, tc), yz = y + σ
∂y

∂σ
(14)

The σ dependence of y(σ, t) is easily obtained by assuming

y(σ, 0) = y1(0)[σ2 − σ2
0(0)]. (15)

Two parameters, σ0(0) and y1(0), correspond to the spontaneous magnetic moment M0(T ) and
the expansion coefficient b(T ), respectively, in (4) at T = 0. After substitution of (15) into (14),
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they are determined as follows.

y1(0) =
λ

5c
=

TA
15cT0

, σ2
0(0) =

1

cy1(0)
A(0, tc) =

5T0

TA
C4/3t

4/3
c , (16)

where A(0, tc) ' C4/3t
4/3/3, with C4/3 = 1.006089 · · · , is satisfied for small tc. As for σ2

0(0), the
same result has been also derived by the SCR theory.

According to the thermodynamic relation in (2), we can find the magnetic free energy
Fm(M,T ) as the function of M . If we note the definition, y ∝ H/M , then (15) is rewritten as
the relation between H and M , as shown in the first equation of (8). By integrating the thus
obtained relation of H vs M with respect to M , the following free energy Fm(M,T ) is derived.

Fm(M,T ) = Fm(0, T ) +N0

[
N0

2χ(T )
m2 +

F1

4
m4 + · · ·

]
, F1 =

2T 2
A

15cT0
, (17)

where m = M/(2µBN0). It is very interesting that the fourth expansion coefficient F1 with
respect to m is determined by using only two spectral parameters T0 and TA. The reason is that
the magnetic isotherm in this case is determined by the effect of zero-point spin fluctuations. On
the contrary, F1 is regarded to be determined by the density of states of conduction electrons
and its derivatives at the Fermi energy in the Stoner-Wohlfarth theory and in the SCR theory.

As an application of the relation of F1 in (18), we can estimate the values of spectral
parameters T0 and TA, only by using the results of magnetic measurements. Note the following
relations are satisfied for σ2

0 in (16) and F1.

F1 =
2T 2

A

15cT0
, σ2

0 '
5T0

TA
C4/3

(
TC
T0

)4/3

. (18)

By eliminating either TA or T0 from the above relations in (18), the following two results are
obtained. (

TC
T0

)5/6

=
σ2

0

5C4/3

(
15cF1

2TC

)1/2

,

(
TC
TA

)5/3

=
σ2

0

5C4/3

(
2TC

15cF1

)1/3

. (19)

These ratios of T0/TC and TA/TC in the left hand side are, therefore, estimated from (19)
because only the values of σ0, TC , and F1 are included in both of the right hand sides. To check
the validity of F1 in (18), values of 4T 2

A/15T0 are compared in Table 1 with those of F1 estimated
from the slopes of the Arrott plots of magnetization measurements. Parameters T0 and TA are
estimated either by inelastic neutron scattering experiments or by NMR measurements. These
two values in the fourth and fifth columns seem to be in fairly good agreement with each other.

4.1.2. Critical magnetic isotherm At the critical temperature T = TC , our basic equation (13)
is well approximated, for y � 1, by

2[A(y, tc)−A(0, tc)] + [A(yz, tc)−A(0, tc)− c(2y + yz) + λσ2

' −πtc
4

(2
√
y +
√
yz) + λσ2 = 0,

(20)

because of the critical thermal amplitude A(y, t) given by

A(y, t)−A(0, t) ' −πt
4

√
y. (21)
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Table 1. Comparison of values of 4T 2
A/15T0 and F1.

Compounds T0(K) TA(K) 4T 2
A/15T0(K) F1(K) Ref.

MnSi 231 2.08×103 5.0 ×103 9.7×103 neutron [7]
171 2.11×103 6.94×103 – NMR [8]

Ni3Al 3590 3.09×104 0.71×105 – neutron [9]
Ni74.7Al25.3 2860 4.05×104 1.53×105 1.0×105 NMR [10]

Sc3In 565 2.00×105 0.66×105 2.0×105 NMR [11]
ZrZn2 321 8.83×103 1.05×104 1.3×104 NMR [12]

Y(Co1−xAlx)2 NMR [13]
x = 0.13 2290 1.16×104 1.57×104 2.1×104

x = 0.15 2119 6.34×103 0.51×104 1.0×104

x = 0.17 2093 7.03×103 0.63×104 1.6×104

Both the y- and the yz-linear terms in (20), originated from the zero-point fluctuations, are also
neglected in this limit. The solution of (20) is easily obtained by assuming the σ dependence
proportional to σ4, as given by

y(σ, tc) = ycσ
4, yc =

[
4λ

πtc(2 +
√

5)

]2

. (22)

The observed magnetization curve of the MnSi [14] will be a good candidate to confirm the
above σ dependence. The linearity of the Arrott plot of this compound was known not to be
satisfied around the critical temperature as shown in Figure 2 (right). Its origin was sometimes

M
4

H/M

M
2

H/M

Figure 1. Magnetization curve of MnSi plotted by M4 vs H/M (left) and M2 vs H/M (right)
at T = 29 K.

ascribed to the relatively larger magnitude of spontaneous magnetic moment of this compound.
Therefore, it was only later that the critical M4 vs H/M relation was found to be well satisfied
as shown in the left figure. Recently good linear relations are observed for Ni [15] and the
Heusler compound Co2CrGa [16] by Nishihara et al , for instance, as shown in Figure 2.
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Figure 2. Critical magnetic isotherms of Ni (left) and Co2CrGa (right) by Nishihara et al .
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For convenience of the quantitative comparison of the theoretical prediction with experiments,
the critical dependence of (22) is also written as follows.(

M

Mg

)4

= 1.20× 106 T 2
C

wAT 3
Ap

4
s

H

Mg
, (23)

where wA is the molar weight per magnetic atom or ion, and H and Mg are measured in units of
kOe and emu/g, respectively. From the experimentally observed slope of the M4 vs H/M plot,

we can estimate the value of TA with using the values of TC and ps. The values of T
(c)
A estimated

in this way are shown in Table 2 for MnSi [14] and (FeCo)Si by Shimizu et al [17]. They are

fairly in good agreement with T
(g)
A estimated from the magnetization curve in the ground state.

Table 2. Comparison of the values of TA estimated by (23) and those in the ground state.

Compound T
(g)
A (104 K) T

(c)
A (104 K) Ref.

MnSi 0.218 0.129 [14]
FexCo1−xSi [17]

x = 0.36 1.179 0.727
0.48 0.998 0.727
0.67 0.987 0.725
0.77 1.209 0.824
0.88 1.518 0.917
0.91 2.273 1.268

As the last example, the Arrott plot of numerically evaluated magnetization curves are
shown in Figure 3. As a general tendency, the almost linear relations between M2 and H/M
are observed in this figure. Initial slope of curves, however, increases towards the critical
temperature, and it finally diverges to infinity.
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Figure 3. Arrott plot of numerically
evaluated magnetization curves for T/TC =
0, 0.5, 0.9, 1, 1.1, 1.5, 2 from the top.

4.2. Temperature Dependent Properties
As the typical properties of temperature dependence, the magnetic susceptibility in the
paramagnetic phase and the spontaneous magnetization below the critical temperature are
treated in this section.

4.2.1. Curie-Weiss law temperature dependence of magnetic susceptibility Since both of σ = 0
and yz = y are satisfied in the absence of the external magnetic field above TC , the basic equation
(13) is simply written as follows.

A(y, t)− c y = A(0, tc). (24)

Although it looks like the same equation of the SCR theory, the origin of the above coefficient
c of the left hand side is completely different. The y-linear coefficient in this theory originates
from the fourth order expansion coefficient b(T ) of the free energy in (1). Therefore, the almost
t-linear solution of y depends on the assumption that b(T ) is independent of temperature. In our
view, however, it depends on temperature and vanishes at the critical point, where the critical
magnetic isotherm, H ∝ M5, is satisfied. The coefficient c in (24) rather originates from the y
dependence of the amplitude of the zero-point spin fluctuations as shown in (12).

The thermal amplitude A(y, t) in the left hand side of (24) increases with temperature. It is,
however, compensated by the second y-linear term, to satisfy the spin amplitude conservation.
The temperature dependence of the magnetic susceptibility is therefore determined as the
solution y ∝ χ−1 in (24). It is known that numerical solutions of (24) give the fairly good
T -linear dependence of y, i.e. the Curie-Weiss law dependence of the magnetic susceptibility.

In the following, we show that a very interesting relation is derived from (24). If we assume the
Curie-Weiss law temperature dependence of the magnetic susceptibility χ(T ), its approximate
T dependence is given as follows.

1

N0
χ(T ) '

p2
eff

12(T − Tc)
, or

N0

χ(T )
' 12(T − Tc)

p2
eff

. (25)

From the definition of y(t), the following relation is also satisfied.

N0

χ(T )
= 2TAy(t) ' 2TA

dy(t)

dt
(t− tc) =

2TA
T0

dy(t)

dt
(T − Tc). (26)

By equating the right hand sides of N0/χ(T ) in (25) and (26), the following relation is derived.

6

p2
eff

' TA
T0

dy(t)

dt
(27)
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Eliminating the ratio TA/T0 from (27) and the second equation of (18) for σ2
0 by substituting

(27) into (18), the following relation is finally obtained [4, 5].

p2
eff

p2
s

' 3

10C4/3dy/dt

(
T0

TC

)4/3

, (28)

where ps = 2σ0 is defined. According to the distinct feature of (24), the slope dy/dt is almost
independent of magnets.

Independently of the above argument, so-called Rhodes-Wohlfarth plot, i.e. pC/ps vs TC plot,
was already proposed [18]. The value of pC is defined by the relation pC(pC +2) = p2

eff . We show
in Figure 4, experimentally observed ratios of magnetic moments for compounds YxNiy, plotted
in two different ways against TC or TC/T0. As shown in the right figure of Figure 4, almost all

p
c
/
p
s

Tc

p
ef
f
/
p
s

Tc / T0

Figure 4. Rhodes-Wohlfarth plot (left) and its revised one (right) for itinerant electron
ferromagnets, YxNiy by Nakabayashi et al [19]. Solid circles of i, j, k, and l are for ZrZn2,
MnSi, Ni3Al, and Sc3In, respectively.

the ratios fall near the solid theoretical curve, confirming the validity of (28). Recently, another
log(peff/ps) vs log(TC/T0) plot has been also proposed as shown in Figure 5.

4.2.2. Spontaneous magnetic moment In the ordered phase below Tc, the σ dependences of
y(σ, t) and yz(σ, t) are given by

y(σ, t) ' y1(t)[σ2 − σ2
0(t)], yz(σ, t) ' 2y1(t)σ2

0(t) + 3y(σ, t), (29)

where σ2
0(t) and y1(t) are the spontaneous magnetic moment squared in the absence of external

magnetic field and the fourth expansion coefficient of the free energy. These parameters are
determined by substituting y(σ, t) and yz(σ, t) in the above (29) and σ2 given by

σ2 ' σ2
0(t) +

1

y1(t)
y(t), (30)

into our basic equation (8). Then the following simultaneous equations for two independent
parameters, U(t) = σ2

0(t)/σ2
0(0) and V (t) = yz(σ0(t), t)/yz(σ0(0), 0), are obtained as the zeroth
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Figure 5. Deguchi-Takahashi
log-log plot for various itinerant
electron ferromagnets [6]. The
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relation, peff/ps ' 1.4(T0/TC)2/3,
estimated theoretically.

and the first expansion coefficient with respect to y.

U(t)− 2

5
V (t) +

1

5A(0, tc)
[2A(0, t) +A(yz0, t)] = 0,

V (t)

{
1− 1

5c
[2A′(0, t) + 3A′(yz0, t)]

}
= 0.

(31)

Although it may seem to be a trivial problem, the y derivative of the perpendicular component
of the thermal amplitude A′(y, t) has to be well-defined at y = 0 [5] in the second equation of
the above (31). The simple

√
y dependence of A(y, t) will lead to the divergent A′(0, t). To find

the t-dependence of U(t) and V (t) below TC , we have to rely on some numerical calculations.
As will be shown later, numerically calculated these parameters vanish simultaneously at the
critical point.

Experimentally, the T 2-linear dependence of σ2
0(t) is observed for most of weak itinerant

electron ferromagnets. On the other hand, almost no interest have been payed on the same
dependence of y1(t), except for the analysis of Wohlfarth and de Chatel [20] in Figure 6, as well
as those by Beille et al [21] for Ni-Pt alloys in Figure 7. If we confine our interest within these
temperature ranges, analytical treatments become possible as will be shown below.

(i) In the limit of low temperature, reduced fourth expansion coefficient, y1(t)/y1(0), and the
spontaneous moment squared, U(t) = σ2

0(t)/σ2
0(0), are given as follows.

y1(t)

y1(0)
=
V (t)

U(t)
= 1− c[2(π/2)4 + 3]

480A2(0, tc)

(
T

T0

)2

+ · · · ' 1− b0
p4
s

(
T

TA

)2

,

σ2
0(t)

σ2
0(0)

= U(t) = 1− c[(π/2)4 + 5(π/2)2 + 4]

360A2(0, tc)

(
T

T0

)2

+ · · · ' 1− a0

p4
s

(
T

TA

)2

.

(32)

where b0 ' 56.91 and a0 ' 112.1. These relations provide us the alternative ways to
estimate the parameter TA experimentally. For example, from the T 2-linear coefficient α0

of U(t) in (33) below, the value of TA is estimated as follows.

U(t) ' 1− a0

p4
s

T 2

TA
= 1− α0T

2, TA =
1

p2
s

√
a0

α0
(33)
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Figure 6. T 2-linear dependence of F (T ) ∝ 1/y1(t) for Zr0.92Ti0.08Zn2 (left) and ZrZn19 (right)
by Wohlfarth and de Chatel (1970).
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Experimentally estimated values of TA are shown in the third column of Table 3 for several
itinerant ferromagnets. They are compared well with those in the fourth column estimated
from the magnetization curves in the ground state.

Table 3. Comparison of the values of TA and T
(g)
A estimated by two different experiments.

Compounds α0 (K−2) TA (K) T
(g)
A (K) Ref.

Ni74.7Al25.3 2.77 × 10−3 6.00× 104 3.85× 104 [22]
Ni3Al 0.784× 10−3 4.51× 104 3.09× 104 [23]
ZrZn2 2.69 × 10−3 9.51× 103 7.40× 103 [24]

Y2Ni15 8.54 × 10−5 3.41× 104 3.51× 104 [25]
YNi3 1.20 × 10−3 1.28× 105 0.92× 105 [26]

Ni0.45Pt0.55 1.0 × 104 0.69× 104 [27]
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(ii) Around the critical temperature below TC , the following temperature dependence of U(t)
and V (t)/U(t) are derived from (31).

U(t) =
σ2

0(t)

σ2
0(0)

' ac[1− (T/TC)4/3],

V (t)

U(t)
=
y1(t)

y1(0)
' bc[1− (T/TC)4/3],

(34)

where ac = 7/5 and bc '
640cC4/3

21π2t
2/3
c

� 1 for tc � 1.

Finally, we show in Figure 8, numerically calculated results of the temperature dependence
of σ2

0(t)/σ2
0(0) and y1(t)/y1(0) below TC . The steep decrease of the dashed curve of

0.0
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0.8
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2
/

0
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0.0 0.2 0.4 0.6 0.8 1.0

T/Tc

Figure 8. Numerically evaluated spon-
taneous magnetic moment σ2/σ2

0 (solid
line) and the fourth expansion coefficient
y1(t)/y1(0) of the free energy (dashed line).

y1(t)/y1(0) around the critical point results from the 1/t
2/3
c dependence of the coefficient bc

in (34).

5. Summary
Since the successful explanation of the Curie-Weiss law dependence of the magnetic susceptibility,
several misleading statements have been made in the SCR theory. They are closely related to its
basic concepts. Its strict condition on the magnetization curve has actually caused the problems
around the critical point. The purpose of this review is to clarify the origin of these problems.
On the other hand, we show how many interesting magnetic properties are derived from another
theory of spin fluctuations based on the quite different basic ideas of TAC and GC.

To conclude, magnetic properties of itinerant electron ferromagnets should be understood
according to the following basis.

• Spin amplitude conservation plays predominant rolls in our understanding of itinerant
electron magnets.
It implicitly implies the significant role of zero-point spin fluctuations.

• The linearity of the magnetization curve between H/M and M2 is not generally satisfied.
At the critical temperature, for instance, M4 vs H/M relation is rather satisfied.
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• Temperature and external field dependence of itinerant electron magnets are not so simple.
They will change simultaneously with temperature or under the influence of the external
magnetic field, contrary to the expectation of early studies.

Finally, as applications of the spin fluctuation theory presented in this review, the effects
of spin fluctuations on the specific heat and the magneto-volume effects have also been
treated [6, 28, 29]. Both dependences on temperature and external magnetic field are treated in
consistent with thermodynamic relations.
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