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Abstract. In the present work we report the principal motivation and reasons for the new
stage of the Pierre Auger Observatory, AugerPrime. This upgrade has as its principal goal
to clarify the origin of the highest energy cosmic rays through improvement in studies of the
mass composition. To accomplished this goal, AugerPrime will use air shower universality,
which states that extensive air showers can be completely described by three parameters: the
primary energy FEo, the atmospheric shower depth of maximum Xmax, and the number of
muons, N,. The Auger Collaboration has planned to complement its surface array (SD), based
on water-Cherenkov detectors (WCD) with scintillator detectors, calls SSD (Scintillator Surface
Detector). These will be placed at the top of each WCD station. The SSD will allow a shower
to shower analysis, instead of the statistical analysis that the Observatory has previously done,
to determine the mass composition of the primary particle by the electromagnetic to muonic
ratio.

1. Introduction

The origin of the ultra-high energy cosmic rays (UHECR) is still an open science case. The
UHECR offer information about the most powerful astrophysical sources and they allow one to
investigate particle acceleration at the highest energies, in a range that can not be covered by the
particle accelerators. The mass composition of ultra-high energy cosmic rays is a very important
observable to understand their origin. The atmospheric depth at which the shower reaches its
maximum size, Xmax, i one of the most robust variables to infer the mass composition of air
showers.

The Pierre Auger Observatory uses fluorescence detectors to measure the Xy, and operates
with an enhancement, the High Elevation Auger Telescopes (HEAT), which allows Auger to go
down in energy to 10'7 eV, the range of study covers from 10'7 to > 109 eV.

With three decades of data, the Pierre Auger Observatory has some interesting results about
Xax. Between 107 and 10"3 eV, X, . increases by around 85 g cm™2 per decade of energy,
Fig. 1. This value is larger than the one expected for a constant mass composition (~ 60 g
cm~2/decade) and indicates that the mean primary mass is getting lighter. Around ~ 1083 eV
the observed rate of change of (Xjax) becomes significantly smaller (~ 26 g cm~2/decade)
indicating that the composition is becoming heavier. The first two moments of the Xpax
distribution ({Xmax) and o(Xmax)) are related to the first two moments of the distribution of the
logarithm of masses of primary particles ({InA) and o?(InA)) as shown in [1]. The lowest values
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Figure 1. In the left plot the mean of the measured X, distribution is shown. In the right
plot is the standard deviation of the X,y distribution. In both cases the X.x as a function of
energy is compared to air-shower simulations for proton and iron.

for the primary mass are at around an energy of 10!8-3 eV, and increase for higher energies. The

change might be an indication that the relative fraction of protons becomes smaller for energies
above =~ 10'®3 eV (see [2]). The implication of the distributions of Xy, have been studied in
detail by the Pierre Auger Collaboration by considering different assumptions on composition
and on hadronic interaction models [2]. Despite use of the interaction models, the Auger data
are not well described by a mix of protons and iron nuclei over most of the energy range. The
best fits are obtained by considering intermediate masses for the mass composition.

2. Air Shower Universality

Air shower universality says that extensive air showers (EAS) can be completely characterized
by three parameters: the primary energy Ej, the atmospheric depth of shower maximum Xy,
and the number of muons, N,. From these parameters, the X, and the N, depend of the
mass of the primary particle, and are subject to significant shower to shower fluctuations. It
is possible to place constraints on hadronic interaction models, once these two parameters are
measured and compared with simulations. In some previous studies it has been proved that
the energy spectra and the angular distributions of electromagnetic particles [3], as well as the
lateral distribution of energy close to the shower core, are universal [4] [5], i.e. they are functions
of FEy, N, and the atmospheric depth X« only.

Another important fact we should consider is that some aspects of Auger SD data are not
completely understood, such as: the attenuation curve,the difference between the spectrum
obtained from inclined events (which are events with zenith angle between 60° and 80°) in
comparison with the spectrum obtained from data with zenith angles less than 60°, when they
are shown as a fractional difference (also called the residual) [6]. Also, the information of the
FADC traces from the water-Cherenkov stations (belonging to the SD) located far from shower
cores have been used to make a reconstruction of the muon production depth, however the
current level of systematic uncertainties associated with its determination prevent us from using
this to make conclusive statements on mass composition [7].

All the approaches presented so far determine the muon normalization indirectly, leaving it
convoluted with the effects of shower development and fluctuations, or relying on the energy
scale given by the fluorescence data.
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3. Observables

In this work we present the universality in the interpretation of surface detector data. We need
to separate the properties of the showers, including the electromagnetic component, the average
depth of shower maximum (Xy,ax), the normalization of the muon signal at 1000 m (NV,) and
the surface detector energy scale [8]. The normalization of the muon signal is directly related to
the number of muons in the shower. The (Xj,ax) has been measured by the fluorescence detector
with very well known uncertainties. We used this knowledge to infer the number of muons as
function of energy in the same way as the energy scale from surface detectors.

The ultra-high energy cosmic rays are very difficult to measure because they have a low rate.
For this reason, the Observatory covers a large area, with large separation between detectors.
In this way, the shower properties are measured from different points at different distances from
the shower core. When the size of the shower is reconstructed, the lateral distribution function
(LDF), which describes the fall-off of signal size with the distance from the shower core, leads
to a related a uncertainty in both the location of the shower core and in the measurement of the
integrated LDF. To avoid the large measurements fluctuations, Hillas proposed a method using
the signal at some distance (rqy) from the shower core to classify the size of the shower, and
ultimately the energy of the primary particle [9]. The advantages of this method are: (i) the
effect of uncertainties in the LDF are minimized at a particular core distance, and (i7) although
the total number of particles at ground level is subject to large fluctuations, the fluctuations of
the particle density at the chosen distance from the core are quite small. For example it was
shown that at 1017 eV the RMS variation in the total number of particles is ~ 67%; for the same
shower the RMS variation in the signal of a water-Cherenkov detector at 950 m is ~ 6%. His
conclusion was shown to be robust for a variety of hadronic propagation models and energies.

To measure the energy of the primary particle two steps are necessary. First, the detector
signal must be measured at some distance from the core and, second, this characteristic signal
must be linked to the energy of the primary particle. The Pierre Auger Observatory as a
hybrid detector has the advantage of having a fluorescence detector which measures around
10% of the EASs observed with the surface array. The calorimetric energy measurement from
the fluorescence detectors can be used to calibrate the characteristic signal from the surface
detector. Identifying the optimum core distance r for arrays with large spacing is problematic.
Identifying the 7., at which to measure the signal of an air shower, will minimize the uncertainty
in the energy of the primary particle which follows from a lack of the knowledge of the true LDF.
For the Pierre Auger Observatory the 74, is 1000 m, so the characteristic signal will be S(1000)
and will be used to determine the energy of the primary particle. Around 1000 m the expected
signal is robust against inaccuracies in the assumed LDF, better that 5% [10].

4. Electromagnetic and Muonic Component
In an extensive air shower the electromagnetic component (EM) is initiated by neutral pions, the
EM component reaches its atmospheric depth of maximum directly related to the primary mass.
The EM component shows universality features that have been used to study the Cherenkov
light production in EAS [11] and is a very good estimator of the primary energy.

On other hand, the muon component is due to the charged pions; its maximum is about 100
g cm™2 deeper in the atmosphere. The muons bring information on the primary particle mass
and the hadronic interaction models. The study of the well known “muon deficit” in simulations
[12] as compared to data is mandatory in order to use the muons as composition observables.
Also the study of muons can reduce the systematics in the energy scale.

Separating these two components with the Surface Auger for the Pierre Auger Observatory,
can be very difficult:

e vertical muons deposit on average 240 MeV in the surface station, the signal being
proportional to the station volume, their flux is from 1 to 3 orders of magnitude lower
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than the EM one.

e the EM component is made up of 4's and, roughly one order of magnitude less, by e®. The
surface station acts in this case as a total absorption calorimeter. The average deposited
energy per particle is 5 — 10 MeV.

The temporal profile of the shower can be studied with great detail in each SD station, because
their electronics digitizes the signals with a sampling rate of 40 MHz (in AugerPrime will increase
to 120 MHz). Thanks to this characteristic it is possible to develop some techniques to separate
the signal components [13]. Some of them are: the deconvolution of peaks in traces, the study of
jumps and subsequent developments, the smoothing, or methods where the information about
muons comes from universality properties of showers [8] [14].

In the current model adopted by the Observatory, shower universality has been tested in
terms of the shower plane signal, i.e. there were only considered the shower particles passing
through the top of a detector placed perpendicular to the shower axis. This avoids zenith
angle dependencies [8]. The study was performed using simulations, the shower plane signals
were divided into electromagnetic particles and muons. In order to have a better separation of
the two components, there was included the signal from the electromagnetic decay products of
muons in the muon component, leaving a “pure” electromagnetic component (Se,, in VEM). It
is important to mentioned that the electromagnetic decay products of muons contributes with
15% of the muon signal in the detector.
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\ | | \
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Figure 2. Simulated muon signals, in black for proton and in red for iron. The showers were
simulated using QGSJetIl/Fluka, between 0° and 70°.

In the Fig. 2, is shown the muon signal (S,) as function of DG = Xground — Xmax, which
is the distance from the shower maximum to the detector along the shower axis (in g/cm?).
The proposed method has shown that the muon and electromagnetic components at 1000 m
are completely determine by DG, and the overall muon normalization, N,. The parameter DG
depends of Xy,ax and 6, and it is possible to do a parametrization of S1g00 = S1000(Xmax: Ny, 0)
for a given energy.

5. AugerPrime

AugerPrime will be able to measure the different abundances of muons, photons and electrons

in air showers at the surface ground level, to obtain a more precise handle on the primary cosmic

ray composition, with increased statistics at the highest energies. The key to differentiating the

ground-level air shower particles lies in improving the detection capabilities of the surface array.
AugerPrime consists in covering each of the 1660 water-Cherenkov surface station with planes

of plastic-scintillator detectors (SSD) of area 4 m?. This enhancement will allow the Auger
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Observatory to determine the electron/photon versus muon abundances of air showers. The
scintillator detectors will be housed in weatherproof enclosures, attached to the existing water-
Cherenkov stations, as shown in Fig. 3. The scintillator light will be read out with wavelength-
shifting fibers, which are bundled and attached to photomultiplier tubes Fig. 4. Since the
surface stations are always working, the AugerPrime upgrade will acquire information for the
full data set collected in the future [15].

. ) ) _ Figure 4. SSD detector with green
Figure 3. Drawing of SD station with wavelength-shifting fibers, which carry

scintillator detector (SSD) of area 4 m?, light to a photomultiplier tube(not shown).
housed in a weatherproof enclosure.

The AugerPrime project includes other detector improvements. The dynamic range of the
surface stations will be extended with the addition of a fourth photomultiplier. New electronics
will be included, with faster sampling of the PMTs signals to a better identifications of the muon
signals. New GPS will be implemented in each surface station to improve the timing accuracy
and calibration. Also, some tests have been done with the fluorescence telescopes to extend
measurements during nights with highly illuminated moon above the horizon. This will extend
the duty cycle of the surface and fluorescence detector arrays of the Pierre Auger Observatory to
30% approximately. As a consequence, AugerPrime will have more precise measurements of the
energy and X, and therefore a better determination of the mass composition of the primary
cosmic rays radiation.

In November 2015, the Auger Collaboration officially announced AugerPrime in Malargiie,
Argentina, during a meeting with its International Finance Board and dignitaries from different
collaborating countries. A renewed agreement was signed and it was establish that AugerPrime
will be operate for 10 years. It is expected that, by 2018, the installation of the new detectors
will be complete, in the meantime the Observatory will continue taking data.
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