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Abstract. In this paper, we show the existence of various types of non-classical effects in
the model of the nonlinear Kerr-coupler containing two quantum nonlinear oscilators mutually
coupled by continuous nonlinear interaction, such as squeezing, anti-bunching, intermodal
entanglement and their higher-order counterparts. By using unitary evolution operator
formalism and the common inequalities expressed in term of various moments defined by
products of creation and annihilation operators, we find numerically the ”exact” solutions
of these factors for non-dissipative. We show and discuss the parameters considered can be
indicators of generation such nonclassical effects and hence, quantumness of the system.

1. Introduction
One of the key problems related to the quantum information theory is quantum state engineering
which allows us generate the nonclassical states. These special features of the quantum systems
bring the remarkable applications in quantum information theory in comparison with the
classical one [1, 2, 3, 4, 5, 6]. The signature of non-classicalities can be detected in the numerous
ways, which can characterize as squeezing, anti-bunching, steering, intermodal entanglement,
and their higher-order counter parts. Squeezed states can be suggested for the implementation
of continuous variable quantum cryptography and teleportation of coherent states [1, 2]. Anti-
bunching is understood as the characteristic of a radiation field in whatever place the mean
number of photon is greater than the variance of the photon number distribution. Thus,
antibunched states can be employed to build a high-quality single photon sources [4]. Entangled
states play a crucial role in implementation quantum cryptography, quantum teleportation,
dense-coding, quantum key distribution [1, 3, 5]. The existence of those properties have been
widely studied in various quantum optical systems [7, 8]. However, the researchers working in
different aspects of quantum information theory and quantum optics are still interested in study
the possibility of generation of different nonclassical characters. In this paper we shall show
how to model quantum dynamics of nonlinear coupler system, nd time-evolution wave function
and evolution of operator formalism and the common inequalities expressed in term of various
moments defined by products of creation and annihilation operators. Then we will show that
our system exhibits its non-classical effect and hence, quantumness of the system.

2. Model of Hamiltonian
In this paper we shall consider the model comprising two mutually nonlinear interacting quantum
nonlinear oscillators labeled by a and b. They are described by the following Hamiltonian
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expressed in terms of boson creation and annihilation operators â† (b̂† and â(b̂) respectively:

Ĥ = h̄χaâ
†2â2 + h̄χbb̂

†2b̂2 + h̄εnlâ
†2b̂2 + h̄ε∗nlb̂

†2â2 + h̄χ̃â†âb̂†b̂ (1)

The parameters χa (χb) and χ̃ correspond to the self- and cross-Kerr nonlinear interaction,
whereas εnl is a strength of the nonlinear internal coupling between two oscillators. Moreover,
we assuming here that two Kerr-like oscillators located inside the cavity are identical χa/2 =
χb/2 = χ.
Thank to Quantum Mechanics, the quantum problem can be solved in Schrödinger picture, thus
the time-evolution of the system can be understood as the evolution of the vector in Hilbert
space. For state vector |ψ(t)〉, it is held by Schrödinger equation

ih̄
∂

∂t
|ψ(t)〉 = Ĥ|ψ(t)〉 (2)

The evolution of state vector now can be determined as

|ψ(t)〉 = Û |ψ(0)〉 (3)

where Û = exp

(
− i

h̄Ĥt

)
is the unitary operator.

Using n-photon basis, we define the annihilation and creation operators of each mode as square
matrices in the Hilbert space H = Ha ⊗Hb as [10]

ă = â⊗ În and ă† = â† ⊗ În (4)

b̆ = Îm ⊗ b̂ and b̆† = Îm ⊗ b̂† (5)

for the mode a and mode b, respectively. Here Îm(n) is an unity matrix with m(n) dimension.

Applying such operators we are able to construct the Hamiltonians Ĥ and the unitary operators
Û in the matrix representation. Setting initial condition is |α〉|β〉 in two modes of the field.
These initial states can be expressed in number state as [11]

|α〉 = exp (− |α|
2

2
)
∞∑

na=0

αna

√
na!
|na〉; |β〉 = exp (− |β|

2

2
)
∞∑

nb=0

βnb

√
nb!
|nb〉 (6)

Thus, we can express these states in the matrix presentation. Applying standard numerical
procedure we can perform and manipulate evolution of the wave-functions of the system and
then calculate indicators of quantum behavior of the system expressed in terms of expectation
values of functions of annihilation and creation operators of various modes.

3. Non-classicality criteria
3.1. Squeezing and higher-order squeezing
Squeezed states of electromagnetic field are defined on the basis of the generalized Heisenberg’s
uncertainty principle [11]. Contrary to the coherent states, they exhibit strong quantum
properties. Therefore squeezing effect can be applied as indicators of the quantumness of the
system. For the cases of the one mode squeezing, the fluctuations of two quadrature operators of a
single mode a are given by the variances 〈(4X̂a)2〉 = 〈X̂2

a〉−〈X̂a〉2 and 〈(4Ŷa)2〉 = 〈X̂2
a〉−〈Ŷa〉2,

with X̂a and Ŷa defined two quadrature operators [11]:

X̂a =
â+ â†

2
; Ŷa = −i â− â

†

2
(7)
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The system is squeezed if the fluctuation satisfies one of two of the follow conditions

4〈(4X̂a)2〉 − 1 < 0, 4〈(4Ŷa)2〉 − 1 < 0. (8)

If we express appeared above variances in terms of the creation and annihilation operators, the
conditions can be written as [9]:

Sa =
1

2
[〈4â†4â〉+ Re〈(4â)2〉] < 0, (9)

S′a =
1

2
[〈4â†4â〉 − Re〈(4â)2〉] < 0. (10)

More general definitions of the squeezing were defined in [9, 13], we can see as principal squeezing.
It can be measured by the following factor

λa = 〈4â†4â〉 − |〈(4â)2〉| < 0 (11)

If the fluctuation 〈(4â)2〉 is real, then two criteria are equivalent.

Two mode squeezing Analogously to the single-mode case we can define the quadrature
parameters when two modes a and b are considered [14]:

Xab =
â+ â† + b̂+ b̂†

2
√

2
, Yab =

â− â† + b̂− b̂†
i2
√

2
(12)

As it was shown in [15], two-mode squeezing appears when the following conditions are fulfilled

Sab = 2[1 + 〈4â†4a〉+ 〈4b†4b〉

+2Re〈4â†4b〉+ Re(〈(4a)2〉+ 〈(4b)2〉+ 2〈4a4b〉)] < 2. (13)

S′ab = 2[1 + 〈4â†4a〉+ 〈4b†4b〉

+2Re〈4â†4b〉 − Re(〈(4a)2〉+ 〈(4b)2〉+ 2〈4a4b〉)] < 2. (14)

Moreover, we can apply the analogous condition for the two-mode principal squeezing

λab = 2[1 + 〈4â†4a〉+ 〈4b†4b〉

+2Re〈4â†4b〉 − |〈(4a)2〉+ 〈(4b)2〉+ 2〈4a4b〉|] < 2 (15)

where
〈4â†4b〉 = 〈â†b〉 − 〈â†〉〈b〉; 〈4a4b〉 = 〈ab〉 − 〈a〉〈b〉 (16)

One- and two-mode squeezing can be treated as the lowest order non-classicality indicators,
whereas there appear other criteria which are can be applied to test higher-order squeezing
effects. The concept of k-th order squeezing and its criterion was introduced for the first time
by Hong and Mandel [16, 17]. However, in this part we shall concentrate on the definition
proposed by Hillery [18], where higher-order squeezing is defined with use of the variances of
the quadrature operators defined with use of squared creation and annihilation operators. This
idea can be extended to the cases when we take into account higher powers, and two amplitude
powered quadrature variables can be defined as

Xh,a =
ak + â†k

2
, Yh,a = −ia

k − â†k
2

. (17)
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Two operators Xh,a and Yh,a do not commute and therefore, from the uncertainty relation the
criterion for kth-order squeezing can be written as:

H1,a = 〈(4Xh,a)2〉 − 1

2
|〈C〉| < 0, (18)

H2,a = 〈(4Yh,a)2〉 − 1

2
|〈C〉| < 0, (19)

where [Xh,a, Yh,a] = iC

3.2. Normal and higher-order anti-bunching
Anti-bunching is understood as the characteristic of a radiation field in whatever place the mean
number of photon is greater than the variance of the photon number distribution. In quantum
statistics, for the single-mode case photon anti-bunching effect can be described in terms of the
normalized second-order correlation function [19], later defined as

D2
a = 〈â†2(t)a2(t)〉 − 〈â†(t)a(t)〉2 < 0. (20)

For the case when two modes of the field a and b are considered, one can generalize two-mode
anti-bunching concept and define as

Dab = 〈(â†a)2(b†b)2〉 − 〈â†a〉2〈b†b〉2 < 0. (21)

The inequalities shown here are anti-bunching criteria determining two-mode anti-bunching,
for the situation when two modes are involved, one can also apply single-mode criteria for the
particular modes. Beside usual (single- and two-mode) anti-bunching effects one can consider
more general case of higher-order anti-bunching (HOA). Single mode HOA criteria were proposed
by Lee [22, 23]. After generalization, kth order anti-bunching criterion can be expressed in terms
of the creation and annihilation operators as [26]:

Dk
a = 〈â†kâk〉 − 〈â†â〉k < 0. (22)

From (22), it is clear that if a state is anti-bunched in kth order, it has to be anti-bunched in
(k − 1)th order, as well.

3.3. Intermodal entanglement
It is highly desirable to find inseparability criteria which would be directly applicable for
multimode problems. The examples of them are those proposed by Hillery and Zubairy (HZ)
[27, 28], and by Duan at al. [29]. The HZ inseparability criteria refer to some expectation
values, variances and higher-order moments of observable operators. The first HZ criterion can
be expressed in terms of the creation â† (b̂†) and annihilation operators â (b̂) in the following
way:

〈â†ab†b〉 − |〈ab†〉|2 < 0, (23)

When this inequality is fulfilled, the state is entangled. This criterion can be generalized to the
cases when higher moments are considered. For such a case it can be written as [27]

Ekl
ab = 〈(â†)kak(b†)lbl〉 − |〈ak(b†)l〉|2 < 0. (24)

where k and l are non-zero positive integers.
The second HZ criterion, which is fulfilled for the separability states, can be expressed as:

|〈âb̂〉| ≤ [〈â†â〉〈b̂†b̂〉]1/2, (25)

and a violation of it implies that the considered state is entangled. The same way as previously,
this criterion can be generalized for higher-order moments. Thus, it reads [27]:

E
′kl
ab = 〈â†kak〉〈b†lbl〉 − |〈akbl〉|2 < 0 (26)
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4. Witnesses of non-classicality
4.1. Single-mode squeezing
From the solutions found in the previous section we can determine the dynamics of our quantum
system. In consequence we are able to find various witnesses of non-classical phenomena.
We start here from discussion of the one-mode squeezing. In Fig.1 and Fig. 2 we show the
time-evolution of the squeezing parameters Sa(b) (solid curve), Sa(b) (dashed curve) and that of
principal squeezing λa(b). Assuming that the amplitudes α and β for the initial coherent states
are real and equal each other. Because of the equivalence, the lines for two modes are identical.
From the behavior of squeezing factors and principle squeezing, we see that the our system
can give single mode squeezing in a and b. However, for the chosen values of the parameters,
squeezing can not be created in S′a(b) factors.
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Figure 1. Evolution of squeezing factor when initial coherent state are α = 0.2, β = 0.2.
Figures a) and b) correspond to the parameters χ = 1, χ̃ = 1, εnl = 0.5 and χ = 1, χ̃ = 1,
εnl = 1, respectively.
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Figure 2. The time-evolution of the squeezing parameters: a) Sa, S
′
a b) Sb, S

′
b, and c) λa, λb.

Initial coherent states are α = 2, β = 0. Other parameters: χ = 1, χ̃ = 1 and εnl = 0.5.

4.2. Two-mode squeezing
In Fig.3 two-mode quadrature variances Sab (solid curve), S′ab (dash curve) and two-mode
principle squeezing parameter λab are depicted. For the initial coherent states defined by
α = 0.2, β = 0.2 (see Fig. 3b)), we see that the squeezing of the quadrature S′ab does not appear,
contrary to that corresponding to Sab which appear with a quite high intensity. Additionally,
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two-mode squeezing is present practically all the time in our system. When we change the initial
states and assume that α = 2 and β = 0 (see Fig. 3a), non-classical effect disappears almost
completely. The most interesting point is that S′ab does not give any signature of squeezing.
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Figure 3. The time-evolution of two-mode quadrature variances: a) Initial coherent states are
α = 2, β = 0, other parameters: χ = 1, χ̃ = 1 and εnl = 0.5. b) α = 0.2, β = 0.2, other
parameters χ = 1, χ̃ = 1.6 and εnl = 0.2.

4.3. Higher order squeezing
In the preceding section, we have found the single-modes and coupled-mode squeezing effects
existing in our system. In this part, we seek for the possibility of providing higher-order squeezing
effect based on Hillery criteria [16, 17]. If we assume k = 2, the second order squeezing criteria
are constructed.
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Figure 4. The time evolution of second order squeezing for mode a (Fig. a) and mode b (Fig.
b) where α = 0.5 β = 0.3, χ = 1, χ̃ = 1.6 and εnl = 0.2.

In Fig.4 and Fig. 5 we plot higher-order squeezing factor in short an long time evolution and
see the negative regions of these two plots clearly illustrate the existence of this effect. Similar
to the single mode and two mode squeezing, we show that the system can provide higher order
squeezing and the appearance of effect in a particular quadrature depends on the choice of input
coherent state.

4.4. Normal and higher-order anti-bunching effects
In this part, we proceed with the calculations of normal and higher-order anti-bunching. When
the coherent single modes are equal (α = β), there does not exist any signature of normal and
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Figure 5. Short time evolution of higher-order squeezing where α = 0.5 β = 0.3, χ = 1, χ̃ = 1.6
and εnl = 0.2

higher-order anti-bunching. If two initial coherent states are not equal, these effects might be
pronounced.
Existence of normal anti-bunching is obtained in single-mode a for α = 2, β = 0 and α = 0.5,
β = 0.3 is demonstrated in figures 6a) and 6b). It is easy to recognize that for our system this
non-classical property is evident when the initial states are setting up with smaller values of
mean number of photons. In figure 7, the results of our calculations in the factors Da(k) when
α = 0.5, β = 0.3 (Fig.7a) and α = 0.5, β = 0.2 (Fig.7 b) with χ̃ = 1.6, χ = 1, εnl = 0.2
for different values of k are shown. It is seen that we can only detect signals of higher-order
anti-bunching in the mode a (note that the initial coherent state of mode a has greater mean
number of photons than for the mode b i.e. |α| > |β|). Otherwise, there is no any signature of
higher-order anti-bunching.
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Figure 6. Normal order anti-bunching for the parameters a) χ̃ = 1.6, χ = 1, εnl = 0.2, α = 2,
β = 0, b) χ̃ = 1.6, χ = 1, εnl = 0.2, α = 0.5, β = 0.3

4.5. Intermodal entanglement
At this point we apply two higher-order intermodal entanglement criteria for two-mode state
which were introduced by Hillery and Zubairy in [27, 28].

Thus, in Fig.8 we plot E1,1
ab , E2,1

ab , and E2,2
ab for several different values of the nonlinear interaction

strength. It is seen that two modes are not always entangled in time domain. In addition,
when we increase the nonlinear interaction between two modes, we obtain stronger intermodal
entanglement (see dashed lines with deeper minima). Moreover, although we observe a week
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Figure 8. Higher order intermodal entanglement for initial coherent states with α = 0.5,
β = 0.3, other parameters χ̃ = 1.6, χ = 1, εnl = 0.2 (solid line) and εnl = 0.5 (dashed line).
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Figure 9. Higher order intermodal entanglement for input parameters χ̃ = 1.6, χ = 1, εnl = 0.2,
initial coherent state with α = 0.5, and β = 0 (solid line), β = 0.2 (dashed line), β = 0.4 (dotted
line), β = 0.5 (dashed-dotted line).

signature of normal intermodal entanglement with lower value of the nonlinear interaction
strength, higher-order entanglement is more pronounced (see evolution of E2,1

ab , and E2,2
ab ).

Especially, if we look at the plot corresponding to E2,2
ab , we see that it is negative during the

almost whole time-evolution.
In figure 9, we draw the plots of E2,1

ab (k = 2, l = 1), and E2,2
ab (k = 2, l = 2) where χ̃ = 1.6,
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χ = 1, εnl = 0.2 for various cases of the initial coherent states. From the negative regions of
the plots, we detect the signature of higher-order entanglement existing in our the system. It
is seen that all plots exhibit periodic behavior. One can note that for the chosen here values of
the parameters the signature of the lowest order intermodal entanglement (E11

ab ) is not detected.
However, our Kerr-like coupler nonlinear system with nonlinear interaction term still can be
seen as a source of intermodal entanglement and other higher-order ones in general.

5. Conclusions
Various types of non-classicality indicators of two-mode system, such as: squeezing, anti-
bunching, intermodal entanglement and their higher-order counterparts were discussed. We
derived the exact numerical solutions for witnesses of nonclassicality. We have analyzed the
revealed effects caused by contributions of different input parameters. It is showed that the
parameters considered here can be an indicators of the generation such non-classical effects and
hence, quantumness of the system. The nonclassical properties of the system were more evident
when we assumed small values of mean number of photons for the initial coherent states.
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[10] Nguyen T D, Leoński W, Cao Long V 2013 CMST 19 (3) 175–181
[11] Gerry C and Knight P 2004 Cambridge university press
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