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Abstract. In our previous article, the connections between q-deformed harmonic oscillator and
the two types of asymmetric (Morse-like) and symmetric (inverse square cosine form) potentials
have been investigated. The use of these relations in an inverse way to investigate the properties
of q-deformed harmonic oscillators has been proposed. In this work, we explore the possibility
of using this approach to study some real physical systems, such as diatomic molecules, phonon,
etc.

1. Introduction

Deformed Heisenberg algebras with q-deformed harmonic oscillator have been a subject of
intensive investigation and have many useful applications in physics and chemistry [1–7]. The
method of q-deformed quantum mechanics was based on the Heisenberg commutation relations
for bosons. The main parameter of this method is a real number q ∈ [0, 1], called deformation
parameter, and q = 1 is corresponding to the case of in-deformed normal harmonic oscillators.

In the atomic and molecular physics, the interaction between atoms in diatomic and even in
polyatomic molecules is usually described by the Morse potential [8–12]. In algebraic approach,
the Morse potential can be written in terms of the generators of SU(2) group. The quantum
relation between q-deformed harmonic oscillator and the Morse potential was considered in [10],
where the anharmonic vibrations in the Morse potential have been described as the levels of
q-deformed harmonic oscillator. The extended SU(2) model (q-Morse potential) has been also
developed to compare with phenomenological Dunham expansion and experimental data for
numbers of diatomic molecules [10].

In our previous works [14–17], considering deformed algebra as mathematical object and
atomic effective potential as physical model, we proposed the new representations for q-deformed
harmonic oscillator on the base of the physics model potential. In this representation, the
potential for normal harmonic oscillation is parabolic with infinity equal-step energy levels. The
potentials for q-deformed harmonic oscillation are anharmonic Morse potential (anharmonic
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representation) or symmetric Pöschl–Teller potential (symmetric representation). In these case,
energy spectra have finite in-equal steps, which are characterized by a maximal step number
nmax.

In this work, using our developed approach we study some real physical problems: asymmetric
representation for diatomic molecules and symmetric representation for phonon in nano
structures.

2. Asymmetric representation of q-deformed harmonic oscillator

The Morse potential has the form

V (x) = D
(

1− e−k(x−x0)
)

, (1)

whereD is the depth, k is the strength, ω is the characterized frequency, and x0 is the equilibrium
position of the Morse potential.

The energy spectrum for Morse potential is
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where n is the vibrational quantum number.
The energy spectrum becomes quadratic if the higher order contribution CM is neglected.

In equation (2), the energy levels are represented by a system of parallel lines that are not
equidistant.
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The energy levels of the Morse potential and the corresponding harmonic potential are plotted
in Figure 1.

Figure 1. The energy levels Morse potential and harmonic potential.
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3. Asymmetric representation and diatomic molecules

The energy spectrum of diatomic molecules with phenomenological Dunham quadratic expansion
is

E(n) = hcωe

(

n+
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)

− hcωexe

(

n+
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2

)2

+ ..., (4)

where ωe =
ω
2πc , ω is frequency, c is the speed of light in vacuum and n is the vibrational quantum

number. The Dunham vibrational molecular ωe, ωexe are obtained by fitting the potential curve
to the experimental spectral data, ωexe � ωe [10].

If the expansion (4) is truncated to the quadratic term, one obtains essentially the discrete
spectrum of the Morse potential

E(n) = hcωe
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or
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Comparing the coefficients in the expressions (3) and (6), we can express the parameter-set
of the Morse potential via the Dunham parameters, the depth D is

D =
ωe

4xe
, (7)

and the strength k equals

k =

√

4πc

~
µωexe. (8)

Setting k0 =
√

4πc
~
µωe we get

k = k0
√
xe. (9)

The q-deformed parameter can be expressed via xe

q = 1− 2xe, (10)

and the values of largest number nmax is

nmax =

[

1

1− q

]

. (11)

The experimental value of the Dunham constant xe of diatomic molecules are taken from
[10], and the corresponding our calculated values of q, D/ωe, k/k0, nmax are presented in Table
1 and in Figures 2-5.
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Diatomic
molecules

xe.10
−2 q D

ωe

k
k0

nmax

AgBr 2.4613 0.950774 10.1572 0.1569 20
HF 2.1764 0.956472 11.4869 0.1475 22
AgCl 2.1352 0.957296 11.7085 0.1461 23
NaH 1.74179 0.965164 14.3531 0.1320 28
AlH 1.73217 0.965357 14.4328 0.1316 28
BO 0.884985 0.982300 28.2491 0.0941 68
CO 0.617701 0.987646 40.4727 0.0786 80
SnO 0.528665 0.989427 47.2889 0.0727 94
KCl 0.32143 0.993571 77.7774 0.0567 155
KBr 0.30303 0.993939 82.5001 0.0550 165

Table 1. The values of the parameters of diatomic molecules.

Figure 2. The dependence of xe on q of some diatomic molecules.

From Figures 2-5 we can conclude that among the investigated here diatomic molecules, the
most deformed diatomic molecule is AgBr with the deformation parameter qAgBr =0.950774, and
the less deformed diatomic molecule is KBr with the deformation parameter qKBr =0.993939.
All real diatomic molecules have very small deformation with 0.95 < q < 1.

4. Symmetric representation of q-deformed harmonic oscillator

In the work [17] we have studied the deformation parameter q through Pöschl – Teller potential

Vs(x) = −
U0

cosh2(αx)
. (12)

This potential is a symmetric anharmonic potential and has in-equal-step quadratic energy
spectrum with the largest number nmax as above.

The energy levels of symmetric potential and harmonic potential are shown in Figure 6.

In the next session, we use this potential to study the phonon problem.
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Figure 3. The dependence of D
ωe

on q of some diatomic molecules.

Figure 4. The dependence of k
k0

on q of some diatomic molecules.

5. Symmetric representation and phonon in 1D atomic chain

It is well known that, phonon in the solids can be treated as a boson gas. For simplicity we take
the case of 1D atomic lattice and study the deformation effect of phonon in this system.

For 1D atomic chain, nmax = L/a where a is the inter-atomic distance, L is the chain-length.
Usually in real crystals a ' 5Å, and if L is very short (of few nanometers) we have only small
nmax.

We apply symmetric representation of q–deformed harmonic oscillator for phonon in the 1D
atom chain with standard relation between the deformation parameter q and nmax: nmax =
[

1
1−q

]

.

For the case of long chains (a large-sized structures) L � a, nmax → ∞, q → 1,
deformation effect is very small and we can use the Einstein-Debye cut-off frequency: ωE = ω0,
nmax = L

a
� 1.

For the inverse case of very short chain nmax = L/a = [1/(1− q)]. For example L = 5nm,
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Figure 5. The dependence of nmax on q of some diatomic molecules.

Figure 6. Energy levels of symmetric and harmonic potential.

Figure 7. Model of 1D atomic lattice.

nmax = 10, the deformation parameter is q ∼ 0.9. We conclude that for nano size chains the
deformation effect is important.

6. Conclusion

In our previous works considering deformed algebra as mathematical object and atomic effective
potential as physical model, we proposed a new representation for q-deformed harmonic oscillator
on the base of a physical model potential. In this representation, the potential for normal
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Figure 8. The values of the largest numbers nmax depending on deformation parameter q.

harmonic oscillation is parabolic with infinity equal-step energy levels. The potentials for q-
deformed harmonic oscillation are asymmetric Morse potential (asymmetric representation) or
symmetric Pöschl–Teller potential (symmetric representation). In these cases, energy spectra
have finite in-equal steps, which are characterized by a maximal step number nmax.

In this work, using our developed approach we study some real physical problems: asymmetric
representation for diatomic molecules and symmetric representation for phonon in nano
structures.

We prove that the anharmonic potential deformation representation works well for the case of
diatomic molecules. The physical parameters for diatomic molecules depending on deformation
parameter q are plotted in Figures 2-5 with well determined curves. From those figures we can
see that among the investigated here diatomic molecules, the most deformed diatomic molecule
is AgBr with the deformation parameter qAgBr =0.950, and the less deformed diatomic molecule
is KBr with the deformation parameter qKBr =0.993. All investigated real diatomic molecules
have very small deformation of 0.95 < q < 1.

We applied the symmetric potential deformation representation for phonon problem in very
short atomic chain of nanometer length. We found that for 1D atomic nano chains the
deformation effect of phonon is important.

Our developed approach with deformed potentials should be useful in investigating other
physics problems. This will be the subject of our next work.
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