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Abstract. Using the simple deformed three-level model (D3L model) proposed in our early
work, we study the entanglement problem of composite bosons. Consider three first energy levels
are known, we can get two energy separations, and can define the level deformation parameter δ.
Using connection between q−deformed harmonic oscillator and Morse-like anharmonic potential,
the deform parameter q also can be derived explicitly. Like the Einstein’s theory of special
relativity, we introduce the observer effects: out side observer (looking from outside the studying
system) and inside observer (looking inside the studying system). Corresponding to those
observers, the outside entanglement entropy and inside entanglement entropy will be defined..
Like the case of Foucault pendulum in the problem of Earth rotation, our deformation energy
level investigation might be useful in prediction the environment effect outside a confined box.

1. Introduction

Deformed Heisenberg algebras with q-deformed harmonic oscillator recently have been attracted
a great attention and are a subject of intensive investigation. This approach is found some
applications in various branches of physics and chemistry [1-6]. This method of q-deformed
quantum mechanics was developed on the base of Heisenberg commutation relations, and the
main parameter is the deformation parameter q ∈ [0, 1] .

In the atomic and molecular physics, the Morse potential plays an important role. This
potential excellent describes the the interaction between atoms in diatomic and even polyatomic
molecules. One-dimensional Morse-like effective potentials with three-parameter set have many
application in condensed matter, bio-physics, nano science and quantum optics [7-10].

The relation between the problem of q-deformed harmonic oscillator and Morse potential was
considered in [8]. The vibration energy levels of a Morse potential are rather good described by
the energy levels of q-deformed harmonic oscillator.

The extended SU(2) model for Morse potential is also developed to compare with
phenomenological Dunham’s expansion and found a good agreement with experimental data
for numerous diatomic molecules [8-10].
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Considering deformed algebra is a mathematical object and atomic effective potential likes
a physical model, the properties of q-deformed harmonic oscillator on the base of the Morse
potential was investigated inversely way in [11, 12]. The infinite equal-step levels of non-deformed
harmonic oscillator can be mapped to the energy spectrum of the motion in a parabolic potential.
The finite unequal-step levels of q-deformed harmonic oscillator might be described as the motion
in a Morse-like anharmonic potential.

In the our previous work [13], the simple deformed three-level model is proposed (D3L model).
Consider a three-level system with the new parameter δ characterized the level deformation. The
corresponding Morse-like potential can be constructed and then the deformed parameter q can
be defined for this system by using the connection between q-deformed harmonic oscillator and
Morse-like anharmonic potential.

In this work we continue investigate this D3L model in the frame work of composite boson
approach developed in [14-15]. The deformation of energy levels can be characterized by the
entanglement entropy between the constituents of composite bosons. Like Einstein’s theory of
special relativity, we introduce the observer effects: out side observer (looking from outside
the studying system) and inside observer (looking inside the studying system). Corresponding
to those observers, the outside entanglement entropy and inside entanglement entropy will be
defined. Standard cases [14-15] are relating to the outside observer with outside entanglement
entropy.

Very recently, gravitational waves from a Binary Black Hole Merger was observed [16] with
the LIGO. In the past, the Foucault pendulum told us the rotation of the Earth. That are two
examples what inside observers can got the information beyond their systems. That equivalent to
the problem how the observer in a closed box know what happen outside the box?. We consider
that our D3L model with the case of inside observer and inside entanglement entropy could be
useful to this problem.

2. Inverse problem of deformed harmonic oscillator

Consider the first three energy levels E0, E1, E2are known, we can define two parameters
∆1 = E1 − E0, and ∆2 = E2 − E1. Introduce the ratio parameter δ as the main parameter
of our model [13]

δ = ∆E2/∆E1. (1)

We have the deformation parameter q

q =
1

2− δ
←→ δ = 2−

1

q
, (2)

the relation between q and δ are presented in the Fig. 1a and Fig. 1b
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Figure 1. The relation between q and δ: a) q on δ, and b) δ on q.

In the connection between q-deformed harmonic oscillator and Morse-like anharmonic
potential, the maximum level number nmax is an important parameter [13]. The value nmax

is

nmax =

[

(2− δ)

2 (1− δ)

]

=

[

1

2 (1− q)

]

, (3)

where [...] is the integer part, and are presented in the Fig. 2 as a functions on δ (upper steps),
and on q (lower steps).
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Figure 2. The relation value nmax on δ (upper steps), and on q (lower steps).

3. Entanglement entropy of composite bosons

Composite bosons or quasibosons are systems of quasi-particles, which consisted from two or
more constituent particles. Among quasibosons in condensed mater and atomic physics there
are excitons, atoms, molecules, polaritons, etc. In this part we focus on the case of two component
composite bosons.

In order to find the energy dependence of the entanglement entropy we need the expression
for the Hamiltonian HC of the composite boson system with oscillation frequency ωC . The
Hamiltonian of deformed oscillators (deformed bosons) which provide realization of the composite
bosons is [14-15]

HC =
∑

n

ECn =
∑

n

1

2
~ωC [ϕ (n) + ϕ (n+ 1)] . (4)
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The structure functionϕ(n) involving discrete deformation parameter f is quadratic in n,
where n is the number of level energy or number of composite bosons

ϕ (n) =

(

1 + ε
f

2

)

n− ε
f

2
n2, (5)

here ε = +1 for fermionic and ε = −1 for bosonic constituents, and f is a real number.
Hamiltonian of the composite boson system can be written in the form

HC =
∑

n

ECn =
∑

n

~ωC

{

(

1 + ε
f

2

)(

n+
1

2

)

− ε
f

2

(

n+
1

2

)2

+ ε
f

8

}

. (6)

Hamiltonian of the inverse problem with the Morse potential representation is

HI =
∑

n

En =
∑

n

∆1

[

(2− δ)

(

n+
1

2

)

− (1− δ)

(

n+
1

2

)2
]

. (7)

The above two Hamiltonian are same form by replacing

~ωC → ∆1, ε
f

2
→ 1− δ, (8)

and neglecting some constant.
The entanglement entropy Sent is defined as

Sent = ln

(

2

f

)

. (9)

Energy of one composite boson n = 1 is

E = EC1 = ~ωC

(

3

2
− ε

f

2

)

(10)

Therefore the entanglement entropy Sent (E) equals

Sent (E) = ln





ε
(

3

2
− E

~ωC

)



 , (11)

or for the case of fermion constituents with energy in the interval ~ωC/2 ≤ E ≤ 3~ωC/2

Sent (E) = − ln

(

3

2
−

E

~ωC

)

, (12)

and for the case of boson constituents with energy in the interval 3~ωC/2 ≤ E ≤ 5~ωC/2

Sent (E) = − ln

(

−
3

2
+

E

~ωC

)

. (13)

The entanglement entropy Sent versus the value ξ = E/ (~ωC) is presented in the Fig. 3
for two cases ε = +1 with 1/2 ≤ ξ ≤ 3~ωC/2 and ε = −1 with 3/2 ≤ ξ ≤ 5~ωC/2. In both
cases, the entropy Sent (E) goes to infinity for the energy E = 3~ωC/2, which implies maximal
entanglement between constituents.



5

1234567890

41st Vietnam National Conference on Theoretical Physics IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 865 (2017) 012002  doi :10.1088/1742-6596/865/1/012002

0.0 0.5 1.0 1.5 2.0 2.5
 

1

2

3

4

5

Sent

Figure 3. The entanglement entropy Sent versus the value ξ = E/ (~ωC) for two cases ε = +1
with 1/2 ≤ ξ ≤ 3~ωC/2 and ε = −1 with 3/2 ≤ ξ ≤ 5~ωC/2.

In this case the constituents (fermionic or bosonic) become most tightly bound within a
quasiboson, and the quasiboson is most close to pure boson. On the contrary for E = 3~ωC/2,
ε = +1, and E = 5~ωC/2, ε = −1, the entanglement entropy Sent = 0 i.e. the constituents are
unentangled. From physical viewpoint, in this case the constituents are in fact unbound.

4. Inverse problem of deformed harmonic oscillator and entanglement entropy

In order to applicable to the deformed harmonic oscillators we reformulate above problem of
entanglement entropy of composite quasi-bosons following way:

(i) Instead of the fermionic or bosonic parameter of the constituents ε, we introduce the sign
η = ±1 corresponds to the increasing or reducing cases of the energy gaps. Example: energy
spectrum of Morse potential with reducing gaps is corresponding to the case η = (+1),
phonon spectrum in deformed universe model with increasing gaps is corresponding to the
case η = (−1).

(ii) Assume the observer effect like the Einstein theory of relativity. There are two cases:
looking from outside and looking inside. a) Looking from out side case is similar the above
case: one composite boson with two constituents. b) Looking from inside case: instead of
the composite quasi-bosons with two fermionic or bosonic constituents we investigate one
constituent boson entangling with another object.

4.1. Looking from outside case

Using the connection ηf/2↔ 1−δ between the two problems, we can define outside entanglement
entropy SO in energy spectrum inverse problem as

SO (δ) = ln

[

η

(1− δ)

]

, (14)

where 0 ≤ δ ≤ 0 for the case of reducing gaps ε = +, and 1 ≤ δ for the case of increasing gaps
ε = +.

Using the Morse potential representation of q-deformed harmonic oscillator, we have the
connection 1− δ ↔ (1/q)− 1, the outside entanglement entropy SI in this case can be expressed
in the form

SO (q) = ln

[

ηq

(1− q)

]

. (15)
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The values of outside entanglement entropy SO+ versus δ and q are plotted in the Fig. 4a
and 4b, respectively.
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Figure 4. The values of outside entanglement entropy SO+ a) versus δ and b) versus q

We can see that outside entanglement entropy goes to infinity SO+ →∞ for δ → 1 or q → 1
which implies maximal entanglement between two constituents. In this case the constituents
(fermionic or bosonic) become tightly bound within a quasiboson, and the quasiboson is most
close to pure boson. On the contrary, for δ → 0 or q → 1/2 (only one energy level is existed),
the outside entanglement entropy tents to zero SO+ → 0) i.e. the constituents are unentangled.
From physical viewpoint, in this case the constituents are in fact unbound.

4.2. Looking from inside case.

We consider a single non-interacting boson is non-deformed boson with equal energy levels δ = 1
(presented by parabolic potential) and its inverse entanglement entropy SI = 0. When a another
object (second boson) is appeared near its location to form a composite boson, due to the
interaction between the two constituent bosons, the energy spectrum of first boson is changed
(presented by Morse potential). We can say the investigate boson recognizes the existence of
the other object, this filling can be expressed by the inverse entanglement entropy (or inverse
Shannon information)SI 6= 0.

Using again the connection ηf/2 ↔ 1 − δ between the two problems, and in analogy the
Einstein theory of relativity we can define inside entanglement entropy SI in energy spectrum
inverse problem as

SI (δ) =

(

ln

[

η

(1− δ)

])

−1

. (16)

Using the Morse potential representation of q-deformed harmonic oscillator, we have the
connection 1− δ ↔ (1/q)− 1, the inside entanglement entropy SI in this case can be expressed
in the form

SI (q) =

(

ln

[

ηq

(1− q)

])

−1

. (17)

The values of inside entanglement entropy SI+ versus δ and q are plotted in the figure 5, a)
and b), respectively.

We can see that inside entanglement entropy goes to zero SI → 0 for δ → 1 or q → 1 which
implies minimal entanglement between the investigate boson and the object. In this case the
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Figure 5. The values of inside entanglement entropy SI+ a) versus δ and b) versus q

investigated boson and the object become unbound within a quasiboson or they are not affected
one to another. The investigated constituent quasiboson is most close to pure boson. On the
contrary, for δ → 0 or q → 1/2 (only one energy level is existed), the inside entanglement entropy
tents to infinity SI →∞) i.e. the investigate bonson and out box object are strongly entangled.
From physical viewpoint, in this case the investigate boson and object are in tightly bound.

We can use the results of looking inside case to design a seismometer inside a closed box to
detecting object outside the box by deformed energy levels.

5. Discussion

In this work using the our simple deformed three-level model (D3L model) proposed in [13], we
study the entanglement problem of composite bosons.

Consider three first energy levels E0, E1, E2 are known, we can get two energy separations
∆1 = E1 − E0, and ∆2 = E2 − E1 (consider ∆2 6= ∆1 in general), and can define the level
deformation parameter δ = (∆E2/∆E1). Using connection between q-deformed harmonic
oscillator and Morse-like aharmonic potential, the deform parameter q = 1/(2 − δ) also can
be derived explicitly. In the week-deform limit δ → 1,q → 1, we back to the harmonic case with
unique step levels ∆2 = ∆1. In the strong-deform limit δ → 0, q → 1/2, we go to the two-level
problem, where only the ground and first levels can be existed, and the other levels are collapsed,
so ∆2 = 0.

The deformation of energy levels can be characterized by the entanglement entropy between
the constituents of composite bosons. Like Einstein’s theory of special relativity, we introduce
the observer effects: out side observer O (looking from outside the studying system) and inside
observer I (looking inside the studying system). Corresponding to those observers, the outside
entanglement entropy SO and inside entanglement entropy SI will be defined.

Standard cases are relating to the outside observer with outside entanglement entropy. Outside
entanglement entropy goes to infinity SO+ → ∞ for δ → 1 or q → 1 which implies maximal
entanglement between two constituents. In this case the constituents (fermionic or bosonic)
become tightly bound within a quasiboson, and the quasiboson is most close to pure boson. On
the contrary, for δ → 0 or q → 1/2 (only one energy level is existed), the outside entanglement
entropy tents to zero SO+ → 0) i.e. the constituents are unentangled. From physical viewpoint,
in this case the constituents are in fact unbound.

The looking from inside case is interestingly. Inside entanglement entropy goes to zero SI → 0
for δ → 1 or q → 1 which implies minimal entanglement between the investigate boson and the
object. In this case the investigated boson and the object become unbound within a quasiboson
or they are not affected one to another. The investigated constituent quasiboson is most close to
pure boson. On the contrary, for δ → 0 or q → 1/2 (only one energy level is existed), the inside
entanglement entropy tents to infinity SI → ∞) i.e. the investigate boson and out box object
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are strongly entangled. From physical viewpoint, in this case the investigate boson and object
are in tightly bound.

We can use the results of looking inside case to design a seismometer inside a closed box to
detecting object outside the box by deformed energy levels. Like the case of Foucault pendulums
in the problem of Earth rotation, and gravitation sensors LIGO, our deformation energy level
investigation might be useful in prediction the environment effect outside a confined box effect
(inside observer and outside effect) by using the inside entanglement entropy approach.
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