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Abstract. The magneto-transport characteristics of the negative conductivity/resistivity
state in the microwave photo-excited two-dimensional electron system (2DES) is examined
through a numerical solution of the associated boundary value problem. The results suggest,
surprisingly, that a bare negative diagonal conductivity/resistivity state in the 2DES under
photo-excitation should yield a positive diagonal resistance along with a sign reversal in the
Hall voltage.

1. Introduction
Microwave-induced zero-resistance states arise from ”1/4-cycle-shifted” microwave radiation-
induced magnetoresistance oscillations in the high mobility GaAs/AlGaAs system as a reduction
in T leads to the saturation of the resistance minima at zero resistance.[1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21]. These zero-resistance states exhibit activated transport
similar to the quantum Hall situation although the Hall resistance, Rxy, does not exhibit plateaus
or quantization in this instance.[1] The observations have led to some theoretical interest in
understanding associated phenomena.[22, 23, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38]

Some theories have utilized a two step approach to model the observations. (There do exist
alternate approaches which directly realize zero-resistance states, see for example [27, 33, 36])
In the first step, theory identifies a mechanism that helps to realize large oscillations in the
diagonal magneto-photo-conductivity/resistivity, where the minima of the oscillatory diagonal
conductivity/resistivity can even take on negative values.[22, 23, 25, 29] The next step invokes an
instability in the zero-current-state at negative resistivity (and conductivity),[24] which favors
the appearance of current domains with a non-vanishing current density,[24] and zero-resistance.

Naively, one believes that negative magneto-resistivity/conductivity should lead to observable
negative magneto-resistance/conductance, based on expectations for the zero-magnetic-field
situation. At the same time, the existence of the magnetic field is no doubt an important
additional feature because ρxy >> ρxx for ωcτ >> 1, the typical situation in these experiments.
Here, ρxy and ρxx are the Hall off-diagonal and diagonal resistivities, respectively, ωc is
the cyclotron frequency and τ is the relaxation time. Thus, one wonders if the magnetic
field, and the extremely strong Hall effect, are sufficiently important to overcome nominal
expectations, based on the zero-magnetic-field analogy, for an instability in a negative magneto-
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Figure 1. (a) The dark- and photo-excited-
diagonal- (Rxx) and the photo-excited-Hall-
resistance (Rxy) vs. the magnetic field B
for a GaAs/AlGaAs device. Rxx exhibits
a non-vanishing resistance in the dark.
Under photo-excitation (red traces), Rxx

exhibits large oscillations with vanishing
resistance in the vicinity of ±(4/5)Bf , where
Bf = 2πfm∗/e, without concurrent Hall
quantization. (b) Theory predicts negative
diagonal resistivity, i.e., ρxx < 0, at the
oscillatory minima, observable here in the
vicinity of B ≈ 0.19 Tesla and B ≈
0.105 Tesla. (c) Theory asserts that current
domain formation leads to zero-resistance
states (ZRS).
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Figure 2. Numerical simulation of the
potential within a Hall bar device. Panel
(a) shows the potential profile at σxx =
+0.026σxy. Panel(b) shows the potential
variation from the left to the right end at
y = 10. Panel(c) suggests a large Hall
voltage between the bottom and top edges.
Panel (d) shows the potential profile at σxx =
−0.026σxy. Here, the potential profile is
reflected with respect panel (a) about the line
at y = 10 when the σxx shifts from a positive
to a negative value. Panel (e) shows that
the potential still decreases from left to right,
implying a positive Rxx. Panel (f) shows a
sign reversal in the Hall voltage in going from
positive conductivity to negative conductivity

conductivity/resistivity state. Indeed, a related question of interest is: what are the magneto-
transport characteristics of a bare negative conductivity/resistivity state?

To address this last question, we examine here the transport characteristics of the photo-
excited 2DES at negative diagonal conductivity/resistivity through a numerical solution of the
associated boundary value problem. The results suggest, rather surprisingly, that negative
conductivity/resistivity in the 2DES under photo-excitation should generally yield a positive
diagonal resistance, i.e., Rxx > 0. The simulations also identify an associated, unexpected sign
reversal in the Hall voltage under these conditions.
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2. Experiments and results
Figure 1(a) exhibits measurements of Rxx and Rxy at T = 0.5K with and without microwave
photoexcitation. The green curve represents the Rxx in the absence of photo-excitation (w/o
radiation). Microwave photo-excitation of this specimen at 50GHz, see orange traces in Fig. 1,
produces radiation-induced magnetoresistance oscillations in Rxx, and these oscillations grow
in amplitude with increasing |B|. At the deepest minimum, near |B| = (4/5)Bf , where
Bf = 2πfm∗/e, the Rxx saturates at zero-resistance.[1]

Both the displacement theory,[22] and the inelastic model,[29] for the radiation-induced
magnetoresistivity oscillations suggest that the magnetoresistivity can take on negative values
over the B-spans where experiment indicates zero-resistance states. For illustrative purposes,
such theoretical expectations are sketched in Fig. 1(b), which presents the simulated ρxx
at f = 100 GHz. This figure shows that the deepest ρxx minima at B ≈ 0.19 Tesla and
B ≈ 0.105 Tesla exhibit negative resistivity, similar to theoretical predictions.[22, 23, 25, 29]
Theory states,[24] that the only time-independent state of a negative resistivity/conductivity
includes a current which almost everywhere has a magnitude j0 fixed by the condition that
nonlinear dissipative resistivity equals zero. As a consequence, the ρxx curve of Fig. 1(b)
turns into the magnetoresistance, Rxx, trace shown in Fig. 1(c), with zero-resistance over the
B-domains that exhibited negative resistivity in Fig. 1(b).

3. Numerical simulation
Hall effect devices can be numerically simulated on a grid/mesh,[39, 40, 41, 42], by enforcing

∇.−→j = 0, where
−→
j is the 2D current density with components jx and jy,

−→
j = σ

−→
E , and σ is

the conductivity tensor.[39] Enforcing ∇.−→j = 0 is equivalent to solving the Laplace equation
∇2V = 0, which may be carried out in finite difference form using a relaxation method, subject
to the boundary conditions that current injected via current contacts is confined to flow within
the conductor. Simulations were carried out using a 101 × 21 point grid with 6 points wide
current contacts at the ends. For the sake of simplicity, the negative current contact is set to
ground potential, i.e., V = 0, while the positive current contact is set to V = 1.

Fig. 2(a) shows the potential profile at positive conductivity σxx = +0.026σxy. The salient
feature here is that the equipotential contours are nearly parallel to the long axis of the Hall
bar, see Fig. 2(b). Concurrently, Fig. 2(c) suggests a large Hall voltage between the bottom
and top edges. Here the Hall voltage decreases from the bottom- to the top- edge.

Fig. 2(d) shows the potential profile at σxx = −0.026σxy, i.e., the negative conductivity
case. The important feature here is the reflection of the potential profile with respect Fig. 2(a)
about the line at y = 10 when the σxx shifts from a positive (σxx = +0.026σxy) to a negative
(σxx = −0.026σxy) value. Fig. 2(e) shows, remarkably, that in the negative σxx condition, the
potential still decreases from left to right, implying Vxx > 0 and Rxx > 0 even in this σxx ≤ 0
condition. Fig. 2(f) shows that for σxx = −0.026σxy, the potential increases from the bottom
edge to the top edge, in sharp contrast to Fig. 2(c). Thus, these simulations show that the Hall
voltage undergoes sign reversal when σxx ≤ 0, although the diagonal voltage (and resistance)
exhibits positive values. Thus, a negative diagonal conductivity state is expected to exhibit a
positive diagonal resistance along with a sign reversal in the Hall effect.
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