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Abstract. The isoscalar monopole and dipole transitions and their relationship to the
clustering are discussed. By exploiting the Bayman-Bohr theorem, analytical formulae for the
transition matrices are derived to show that the cluster states are very strongly populated by the
IS monopole and dipole transitions. For the quantitative discussion, the AMD calculations for
20Ne, 44Ti and 24Mg are presented. It is demonstrated that IS monopole and dipole transitions
are excellent probe for the clustering.

1. Introduction
At the time when K. Wildermuth, the founder of this conference series, started his study of
nuclear clustering [1, 2], the concept of the nuclear clustering and the cluster models were
criticized [3]. It was shown that an SU(3) shell model [4] and a cluster model wave functions are
mathematically equivalent to each other at the zero inter-cluster distance [3, 5], which is known
as the Bayman-Bohr theorem. The theorem was misinterpreted to argue that the cluster model
was not describing new aspects of atomic nuclei but just describing a known shell model state.

Today, almost 60 years later, it is interesting to know that the theorem is commonly accepted
in an opposite meaning; it is one of the essential and useful theorem for the understanding of
nuclear clustering. An interesting and important application of the theorem is the discussion of
the isoscalar (IS) monopole and dipole transitions and their relationship to the nuclear clustering
[6, 7, 8, 9, 10], which we shall discuss in this contribution.
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Figure 1. IS monopole and dipole strengths of 24Mg. Histogram shows the experimental data,
while the solid line shows the results of RPA calculation.
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Figure. 1 shows the IS monopole and dipole strengths of 24Mg [14]. We see that several
resonances are observed in the low energy region of Ex = 10 ∼ 15 MeV (histograms) which are
not explained by the RPA calculation (solid lines). We can also find that similar resonances are
systematically observed in stable nuclei from 12C to 40Ca [11, 12, 13, 14, 15, 16, 17, 18]. The
Bayman-Bohr theorem plays a central role to show that they are cluster states. With the help
of the theorem, we can prove that the IS monopole and dipole transitions strongly populate
cluster states, and hence, they are excellent probe for nuclear clustering. To illustrate it, we first
discuss the duality of shell and cluster, and derive analytic formula for transition matrices. For
the quantitative discussion, we also present the antisymmetrized molecular dynamics (AMD)
calculations for 20Ne, 44Ti and 24Mg [10, 19, 20, 21].

2. Duality of shell and cluster, and IS monopole/dipole transitions
As mentioned above, the Bayman-Bohr theorem states the equivalence of an SU(3) shell model
and a cluster model at the zero inter-cluster distance. For example, the shell model wave function
for the 20Ne ground state is equivalent to an α+ 16O cluster model wave function,

Φ(0+1 ) = A{ (0s)4(0p)8(1s0d)4 }J
π=0+

(8,0) = nN0
A{RN00(r)Y00(r̂)φαφO } , N0 = 8 (1)

where the inter-cluster motion between α and 16O clusters is described by a harmonic
oscillator wave function RN00(r)Y00(r̂). In this way, the theorem tells us that the ground states
of atomic nuclei have duality of shell and cluster; they are two-faced like Janus. The correct
interpretation of this duality is this: The degrees-of-freedom of cluster excitation is embedded
even in an ideal shell model state. Hence, the pronounced cluster states can be populated from
the shell model state. For example, by increasing the nodal quantum number of the inter-cluster
motion, we get a wave function for an excited 0+ state,

Φ(0+ex) =
∞
∑

N=N0+2

fNnNA{RN0(r)Y00(r̂)φαφO } , (2)

which has pronounced clustering owing to the increased inter-cluster distance. Another
excitation mode is the increase of the orbital angular momentum of inter-cluster motion, that
yields a 1− state with pronounced clustering,

Φ(1−ex) =

∞
∑

N=N0+1

gNnNA{RN0(r)Y10(r̂)φαφO } . (3)

We call these cluster excitations “nodal” and “angular” excitations as shown in Fig. 2. In
20Ne, the 0+4 and 1−1 states at 8.7 MeV and 5.8 MeV are identified as these excited states
[22]. Thus, the Bayman-Bohr theorem guarantees that the pronounced cluster states can be
populated from the shell model state by activating the degree-of-freedom of cluster excitation.

Now, it must be emphasized that the IS monopole/dipole transitions do realize it. They
induce nodal and angular excitations to populate cluster states strongly. It is proved as follows.
Using the cluster coordinate defined in Fig. 3, the IS monopole operator is rewritten as[9],

MIS0 =
A
∑

i=1

(ri − rcm)
2 =

∑

i∈C1

ξ2i +
∑

i∈C2

ξ2i +
C1C2

A
r2. (4)

Note that this expression makes it clear that MIS0 will generate nodal excited states, because
the last term proportional to r2 will induce the nodal excitation of the inter-cluster motion. By
a similar calculation, one finds that the isoscalar dipole operator is rewritten as [10],



3

1234567890

11th International Conference on Clustering Aspects of Nuclear Structure and Dynamics  IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 863 (2017) 012024  doi :10.1088/1742-6596/863/1/012024

d
ip

o
le

m
o
n
o
p
o
le

0+
1-nodal

excitation 
angular
excitation 

ground state

Figure 2. IS monopole and dipole transitions
populate nodal and angular excited states.

Figure 3. ξi denote the internal
coordinates, while r is the inter-
cluster coordinate. C1 and C2 are
the masses of clusters.

MIS1
µ =

5

3

(

C2

A

∑

i∈C1

ξ2i −
C1

A

∑

i∈C1

ξ2i

)

Y1µ(r) +
C1C2(C1 − C2)

A2
r2Y1µ(r) + ..., (5)

where the terms depending on Y1µ(r) will increase the angular momentum of inter-cluster
motion to generate angular excited cluster states. We also see that MIS1

µ is amplified
for asymmetric cluster systems [23], because those terms depend on the mass asymmetry
(C1 − C2)/A.

Thanks to the Bayman-Bohr theorem, it is possible to derive analytic formulae for these
transition matrix by using Eqs. (1)-(5) [9, 10]. In the case of 20Ne, they read

M IS0 = 〈Φ(0+ex)|MIS0|Φ(0+gs)〉 = fN0+2

√

µN0

µN0+2
〈RN00|r2|RN0+20〉 (6)

M IS1 =
√
3 〈Φ(1−ex)|MIS1|Φ(0+gs)〉 =

√

3

4π

[

3

5
gN0+3

√

µN0

µN0+3
〈RN00|r3|RN0+31〉

+ gN0+1

√

µN0

µN0+1

{

48

25
〈RN00|r3|RN0+11〉+

16

3

(

〈r2〉α − 〈r2〉O
)

〈RN00|r|RN0+11〉
}

]

(7)

where 〈r2〉α and 〈r2〉O are the mean-square radius of the clusters. µN is the so-called
eigenvalue of the RGM norm kernel. By using the amplitudes fN and gN calculated by AMD
[19, 20], the formulae can be easily estimated as

M IS0 = 7.67fN0+2 = 5.48 fm2, M IS1 = 3.08gN0+1 − 7.36gN0+3 = 5.82 fm3, (8)

which are as large as the Weisskopf estimates, M IS0
WU = 6.37 fm2 and M IS1

WU = 8.44 fm3.
Thus, the IS monopole and dipole transitions to the cluster states are very strong. These strong
transitions to the cluster states should be observed at relatively small excitation energies which
are usually below the giant resonances, because the energies of the cluster states are governed
by Ikeda threshold rule [24]. This explains why we have many narrow resonances well below
the giant resonances. Therefore, the low-lying IS monopole and dipole strengths are the good
signature of asymmetric clustering.

3. AMD results for 20Ne, 44Ti and 24Mg
For the quantitative discussion, we have performed AMD calculations for several nuclei. Figure.
4 (a) shows the observed and calculated α + 16O cluster bands in 20Ne. The 0+4 and 1−1 states
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Figure 4. Observed and calculated (a) α+ 16O cluster bands in 20Ne, and (b) α+ 40Ca cluster
bands in 44Ti. Arrows in the figure show the calculated transition matrices.

at 8.7 MeV and 5.8 MeV are identified as nodal and angular excited states [22], and AMD
[19, 10] reasonably describes them. The calculated transition matrices are also shown in the
figure. One sees that both of the IS monopole and dipole transitions are very strong and much
more enhanced than the Weisskopf estimates and the cluster estimates given in Eq. (8). This
enhancement owes to the α+ 16O clustering in the ground state.

Figure. 4 (b) shows the observed and calculated α + 40Ca cluster bands in 44Ti. The
experimental assignment of the cluster bands is summarized as follows [25]. First, the ground
state and the angular excited 1− state at 6.2 MeV constitute a parity doublet denoted by
“doublet I”. Second, the nodal excited 0+ state around 11 MeV and another angular excited 1−

around 12 MeV constitute another parity doublet denoted by “doublet II”. AMD calculation
[20, 10] reasonably reproduces them, although the excitation energies are slightly overestimated.
As clearly seen in the figure, the transition strengths to these cluster states are as strong as
the Weisskopf estimates as expected. However, they are not amplified as strong as in the case
of 20Ne. This is due to the reduction of the α clustering in the ground state of 44Ti which is
under the strong influence of the spin-orbit interaction. It is also noted that AMD calculation
yields many other excited 0+ and 1− states below Ex = 20 MeV (not shown in Fig. 4 (b)),
which do not have cluster structure. However, it was found that none of them have sizable IS
monopole and dipole transition strengths. This suggests that these transitions are very sensitive
and selective probe for the clustering. We also performed a similar analysis for 28Si for which
readers are directed to the contribution by Y. Chiba in this volume.

Figure. 5 shows the final example. Very high resolution data for IS monopole response of
24Mg [17, 26] is available as shown by the histogram in the figure. The data shows the existence
of the many narrow resonances below the giant monopole resonance. Solid lines shows the result
of AMD calculation [21] which reasonably describes the distributions of the narrow resonances
at small energy region as well as the giant resonance. From the analysis of the spectroscopic
factor of AMD wave function, we can say that the resonance around 11 MeV is the α +20 Ne
state, that at 13 MeV is the 12C+12C state and so on. Thus, the AMD calculations demonstrate
that IS monopole/dipole transitions are excellent probe for the clustering.

4. Summary
In summary, we have discussed the relationship between the clustering and IS monopole/dipole
transitions to demonstrate how and why they are excellent probe for clustering.

The Bayman-Bohr theorem tells us that the shell model states have duality of shell and
cluster, and guarantees that the pronounced cluster states are populated by activating the
degree-of-freedom of cluster excitation. This is a reason why the cluster states exist universally
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Figure 5. Observed and calculated IS monopole strength distributions of 24Mg.

in atomic nuclei. The theorem is also utilized for deriving analytic formulae of the IS
monopole/dipole transitions which show that these transitions do populate the cluster states
very strongly.

The AMD calculations for 20Ne, 44Ti and 24Mg are also presented. The results reasonably
reproduce the known cluster states in 20Ne and 44Ti, and predict the transitions to the cluster
states are very strong and selective. The results for 24Mg is compared with the high resolution
data. It is shown that by the analysis of the wave function, we can identify a variety of cluster
states in 24Mg such as 12C+ 12C, α+ 20Ne and 2α+ 16O. Thus, the study of cluster states using
IS monopole/dipole transitions is really fascinating and look promising.
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