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Constructing realistic alpha cluster channels
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Abstract. We present techniques that allow for a-cluster channels with realistic a-particle
wave functions from No Core Shell Model calculations to be constructed. We compare results of
several clustering calculations with realistic a wave functions to those assuming a trivial (0s)*
structure.

In this work we report our progress in addressing specific questions related to studies of «
clustering from the perspective of the nuclear shell model approach; our discussion follows a series
of works in Refs. [1-7], and [8], in particular. Let us start by reviewing several key elements
of the shell model approach to clustering. The use of harmonic oscillator (HO) basis, which we
adopt for this work, allows for a formal separation of the center-of-mass (CM) degrees of freedom.
Having an additional HO confining CM potential allows for factorization of the CM degree of
freedom, and the full A-nucleon wave function appears as a product

U = ¢m(R) Y (1)

of the HO wave function ¢,,(R) that depends only on the CM variables R and the
translationally invariant wave function W', which is a function of relative coordinates only. In
our notation n is the number of oscillator quanta. Thus, in eq. (1) the total number of oscillator
excitation quanta is shared between the CM and intrinsic degrees of freedom N =n + N’.

In the traditional approach to clustering the solutions for parent and daughter systems are
both obtained in the form (1) where n = 0. It is then assumed than an intrinsic state of the
«a particle is (0s)* configuration and thus N/, = 0. This approximation simplifies the approach
significantly because then the wave function of the « particle in a given HO CM state, the
channel, can be written as

¢n€m Z X”i CI)U (2)

The expansion goes over all possible A = 4 nucleon configurations (often also referred to as
partitions), labeled by n which have a stretched SU(3) symmetry (n,0), full permutational
symmetry, and spin and isospin quantum numbers S = T" = 0. The expansion cluster coefficients
(CC) X!, are known analytically (3, 8]

1 n! 4!
X" =, = . 3
nt \/4n Lo T, ! (3)

Here «; refers to the number of particles on an oscillator shell n;. Then the fractional parentage

coefficient between parent and daughter states F,/, = (¥ p|CI>7(7l 0): . |¥p) can be evaluated with
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the standard shell model techniques utilizing operator formalism of the second quantization. The
translationally invariant fractional parentage coefficient requires an additional recoil coefficient
that emerges as an oscillator bracket from recouping of the center of mass variables of the
daughter system and « particle into a relative coordinate and a common CM that coincides with
the parent system. The whole procedure and additional renormalization strategy is discussed in
Ref. [8].

The purpose of this work is to present an approach that does not require a simple (0s)?
structure for the a particle. We obtain the a wave function, restricted by the maximum total
number of HO quanta Np,ax using the No Core Shell Model (NCSM) scheme, we use interactions
from [9]. The realistic @ wave function invalidates the expansion in eq. (2), and renders the
analytic result in (3) useless. Nevertheless, the proposed new technique is just as effective
numerically since it does not require construction of SU(3) operators (I)?n,o): tm

We start with an « particle wave function being calculated using the NCSM approach. Upon
application of the Glockner-Lawson procedure this produces a state of the same type asin eq. (1),
where realistic « particle is in the CM HO state with n = 0. Then using sequential applications
of the the CM creation and annihilation operators we obtain states where the a particle is in
the CM state (1) with any desired CM HO quantum numbers. The CM creation operators (and
annihilation correspondingly) are defined in the usual way as

A
1
T _ — T
Bl = o (AMOQRy, — iPp) = \F;:l . (4)

where m denotes a specific magnetic projection of vectors and blm raises the quanta of the a-th
particle. The operator is easily constructed using an isoscalar mass-density dipole E1 operator

[ 4 h
— T

and by taking the part that increases the number of quanta.
In order to boost the CM wave function to a particular state with n = 2p + ¢ quanta, where
p is the number of nodes and ¢ the angular momentum, one can apply various combinations

of creation operators B,Tn. The number of nodes can be increased, keeping rotational quantum
numbers unchanged using a scalar combination of two creation operators

BB = (BTHBL +8! B - BSBS) : (6)

BT : BTCZ)nEm(R) = \/(TL —/ + 2)(” + 14 + 3)/4 ¢n+2€m(R)' (7)

In order to increase the angular momentum ¢ while keeping the number of nodes in the wave
function fixed one can act with B}Ln. The simplest strategy is to build an aligned state where

m =/
B 6u(R) = \/ g onsaenen(R) )

The CM angular momentum operator is a vector construction from CM quanta creation and
annihilation operators Bf x B. In particular, the usual lowering operator required to obtain the
desired magnetic projection is

L Guin(R) = 4V2 (BL, Bo = BIB-1 ) dutn(R) = VI +m) (L= m+ Dénrn1(R).  (9)
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Configuration Nimax =0 Npax — 4 Ap —Ap Npax =0 Npax =6 Exp.
(sd)* 0.038 0.035 2ONe—160 0.755 0.827 1
(p)(sd)?(pf) 0.308 0.282 2Ne—180 0.481 0.563  0.37
(p)*(pf)? 0.103 0.094 24Mg—20Ne 0.411 0.519 0.66
(p)?(sd)(sdg) 0.154 0.141 BMg—22Ne  0.439 0.548 0.20
(5)%(sd)(sdgi) 0.000 0.005 BSi—24Mg 0.526 0.575  0.33
(p)(sd)(pf)(sdg) 0.000 0.009 30Gi—+26Mg 0.555 0.600 0.55
Table 1: Select configuration content of Table 2: Spectroscopic Factors for sd shell
NCSM wave functions for *He with AQ = ground states using SU(3) and realistic «
20 MeV boosted by 8 quanta (L = 0). cluster wave functions (A2 = 14 MeV).

In Table 1 we compare the weights of select configuration components of @ wave functions
from NCSM calculations with Npyax = 4 that have been CM-boosted for n = 8 using the raising
operators with the Np.x = 0 case. The Npy.x = 0 case corresponds to (03)4 « configuration
and reproduces the squared CC in eq. (3). For configurations with N = ). n;a; = 8 the ratio
between the two columns is proportional to the weight of the (0s)* configuration in the a wave
function. This weight depends on the oscillator frequency €2; here A = 20MeV. The last two
lines in Table 1, show N = 10 configurations that are only present in a realistic @ wave function
that is different from (0s)?.

In Table 2 we demonstrate the effect of using a realistic a cluster in spectroscopic calculations.
Here, {2 = 14 MeV that is a more typical value for the traditional shell model. The spectroscopic
factors are calculated using the procedure and sd shell model Hamiltonian outlined in [8]. For
Npmax = 0 in the sd shell the only SU(3) component that contributes is the (8,0) irreducible
representation; this is not the case in a more realistic situation with Ny,,x = 6. Here, channels
with p = 4,3,2,1 all contribute to the (sd)* valence configuration.

In summary, in this work we put forward a new strategy for clustering calculations using the
oscillator-based shell model approach. The strategy is efficient numerically, does not rely on
algebraic techniques, and allows to treat realistic wave functions of clusters from NCSM. Select
simple examples presented here demonstrate the procedure, show the effects of more complex «a
wave functions and highlight the limit when our approach reduces to the algebraic method used
previously.
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