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Abstract. A new theoretical model which employs the real time as the generator coordinate
is developed to describe gas-like cluster states. The model exploits the quantum ergodic nature
of the time-evolution of the wave packets. The result of the benchmark calculation shows that
the new method describes the dynamics of the 3« system reasonably comparable with or even
better than the Tohsaki-Horiuchi-Schuck-Répke wave function.

1. Introduction
In this decade, the a particle condensates in finite nuclei attract a lot of interest. In the very
begging [1, 2], the Hoyle state of 12C was the icon of the o particle condensate. Later, a lot of
theoretical and experimental efforts revealed that there are many families of the 3o condensates
in 12C and established that the a particle condensate also exists in the 4a system, 60 [3, 4].
Different from the cold atomic systems, the a particle condensates are self-bound systems
without the confinement potential, hence the question “how many « particles can form the
condensate?” is very interesting and essential. The experiments [5] imply the possible formation
of 10 and 15 « particle condensates in the compound states of °Ca and %°Zn. Theoretically,
Yamada and Schuck [6] showed that up to approximately 10« particles can form self-bound
condensate. However, their prediction is based on the macroscopic model which approximates «
particles as structureless bosons. Therefore, the microscopic model studies which take the Fermi
statistics of nucleons into account are highly desirable for more detailed and reliable discussions.
Unfortunately, we immediately find serious difficulty in describing the dynamics of many «
particles with the full microscopic models. Imagine that one tries to describe N« particle system
by the generator coordinate method (GCM) which superposes basis wave functions ®;,

It is easy to understand that the number of basis wave function ®; very quickly increases as
the number of « particle increases, which makes the practical numerical calculation impossible.
Therefore, the effective method to generate the basis wave function ®; is indispensable. Several
methods have been suggested, which are based on the random generation of the basis wave
function [7] and the imaginary-time development [8]. In this contribution, we suggest an
alternative but surprisingly effective method which relies on the ergotic nature of the real-
time evolution of the « particle wave packets. We here discuss the result of the benchmark
calculation for 3« system.
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2. Methodology
The Hamiltonian of the 3a system used in the benchmark calculation is given as,

H = Zt —I-ZUN 7”7,] +Z'UC 7'1] tem, (2)

1<J 1<J

where t; and t.,, respectively denote the kinetic energies of the nucleons and the center-of-mass.
As an effective nucleon-nucleon interaction, we used Volkov No. 2 with a slight modification. In
short, the Hamiltonian is common to the other studies using resonating group method (RGM)
[9] and Tohsaki-Horiuchi-Schuck-Répke (THSR) wave function [10].

Our basis wave function for 3a system is the Brink-Bloch wave function,

©(Z1, 22, Z3) = A{ 90(Z1)P0(Z2)P0(Z3) }, (3)
Qu(Z) = A{ 9(r1, Z) X1 0(T2, Z)Xp10(T3, Z) Xt B (T4, Z)Xn) } (4)

o(r,Z) = (27:)3/4exp{—u(r—\%)2+;z2}7 (5)

where ®,(Z) denotes the wave function of « particle located at Z. Here, the three-dimensional
vector Z is complex numbered differently from the ordinary Brink-Bloch wave function, and
hence, they are regarded as the dynamical variable. By applying the time-dependent variational
principle, one obtains the equation of motion (EoM) for the « particle centroids Zy, Z and Zs,

dZ; oH ,
ZCZP]U dZJL/U = aZ:p’ 1= 172737 p,o=x,Y,%, (6)

(P(Z1, 22, Z3)|H|P(Z1, Z2, Z3)) O = 9% In (® (ZhZ27Z3)’(I)(Z1;ZQ7Z3)> )
(B(Z1, 2, Z3)|®( 21, Z2, Z3)) = 777 YARYAR

H =

We evolve the system by solving the EoM (Eq (6)). As a result, we obtain the wave function of
the 3a system at each time t; ®(Z;(t), Z2(t), Z5(t)). Despite of its classical-like look, this EoM
possesses the following excellent properties [11, 12],

(i) The wave function ®(Z;(t), Z2(t), Z3(t)) has ergodic nature.
(ii) The ensemble of ®(Z(t), Z2(t), Z3(t)) follows quantum statistics.

This means that, if time is evolved long enough, the set of wave functions ®(Z1(t), Z2(t), Z3(t))
spans a good model space for 3« system. Therefore, the superposition of the basis wave function,

V= /OT dt c(t) { D(Z1(t), Za(t), Z3(t)) + P*(Z1(t), Za(t), Z5(1)) }, 8)

should give a good description for 3a system. Here, the basis wave functions are conjugated to
guarantee that WU is time even. The coefficients ¢(t) should be determined by the diagonalization
of the Hamiltonian. In other words, by using the EoM, we perform the generator coordinate
method by employing the real time t as the generator coordinate.

3. Numerical benchmark

The practical numerical calculation was done as follows. First, we randomly generate the excited
3a wave function by the imaginary-time evolution. The excitation energy is set E* ~ 15 MeV.
Then we solve the EoM and perform the GCM calculation by discretizing the time ¢ in Eq. (8).
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Figure 1. (a) Energy spectra of 3a system calculated by the present method, THSR [10] and
RGM [9]. (b) and (c) The convergence of the energies and radii of the eigenstates as functions
of the time evolution duration 7.

Figure 1 (a) compares the present result with other theoretical calculations which employ
the same Hamiltonian. It is clear that our model gives very reasonable result and consistent
with the previous methods including the THSR wave function. It is also noted that the radii
are also properly described. For example, the radius of the Hoyle state is calculated as 3.66
fm and 3.7 fm by the present model and THSR. respectively, while the ordinary RGM yields
much smaller radius, 3.47 fm. Thus, the our method can reasonably describe the cluster gas-like
states and has the advantage over the ordinary cluster model. Figure 1 (b) and (c) show how
the binding energies and radii are converged as the duration 7" increases. Solid and dashed lines
show the results obtained by starting from different initial condition. We see that, except for
the 0?{ state which has broad width, the calculation converges as T' becomes large and the result
is independent of the initial condition of the time evolution. Since the extension of this model
is rather straightforward, the application to 4a,5q, ... systems looks fascinating and promising.

4. Summary

In summary, we have developed a new theoretical model which employs the real time as the
generator coordinate. The model relies on the quantum ergodic nature of the EoM of the wave
packets. The result of the benchmark calculation shows that our model can describe the 3«
system reasonably.
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