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Abstract. The algebraic cluster model is is applied to study cluster states in the nuclei 12C
and 16O. The observed level sequences can be understood in terms of the underlying discrete
symmetry that characterizes the geometrical configuration of the α-particles, i.e. an equilateral
triangle for 12C, and a regular tetrahedron for 16O. The structure of rotational bands provides
a fingerprint of the underlying geometrical configuration of α-particles.

1. Introduction

Ever since the early days of nuclear physics the structure of 12C has been extensively investigated
both experimentally and theoretically [1, 2, 3, 4]. In recent years, the measurement of new
rotational excitations of both the ground state [5, 6, 7] and the Hoyle state [8, 9, 10, 11] has
generated a lot of renewed interest to understand the structure of 12C and that of α cluster nuclei
in general. Especially the (collective) nature of the 0+ Hoyle state at 7.65 MeV which is of crucial
importance in stellar nucleosynthesis to explain the observed abundance of 12C, has presented
a challenge to nuclear structure calculations, such as α-cluster models [12], antisymmetrized
molecular dynamics [13], fermionic molecular dynamics [14], BEC-like cluster model [15], (no-
core) shell models [16, 17], ab initio calculations based on lattice effective field theory [18, 19],
and the algebraic cluster model [7, 20, 21].

In this contribution, I discuss some properties of the α-cluster nuclei 12C and 16O in the
framework of the algebraic cluster model.

2. Algebraic Cluster Model

The Algebraic Cluster Model (ACM) describes the relative motion of the n-body clusters in
terms of a spectrum generating algebra of U(ν + 1) where ν = 3(n− 1) represents the number
of relative spatial degrees of freedom. For the two-body problem the ACM reduces to the U(4)
vibron model [22], for three-body clusters to the U(7) model [20, 23] and for four-body clusters
to the U(10) model [21, 24]. In the application to α-cluster nuclei the Hamiltonian has to be
invariant under the permuation group Sn for the n identical α particles. Since one does not
consider the excitations of the α particles themselves, the allowed cluster states have to be
symmetric under the permutation group.

The potential energy surface corresponding to the Sn invariant ACM Hamiltonian gives rise
to several possible equilibrium shapes. In addition to the harmonic oscillator (or U(3n − 3)
limit) and the deformed oscillator (or SO(3n− 2) limit), there are other solutions which are of
special interest for the applications to α-cluster nuclei. These cases correspond to a geometrical
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Table 1. Algebraic Cluster Model for two-, three- and four-body clusters

2α 3α 4α

ACM U(4) U(7) U(10)
Point group C2 D3h Td
Geometry Linear Triangle Tetrahedron

G.s. band 0+ 0+ 0+

2+ 2+

3− 3−

4+ 4± 4+

5−

6+ 6±+ 6±

configuration of α particles located at the vertices of an equilateral triangle for 12C and of a
regular tetrahedron for 16O. Even though they do not correspond to dynamical symmetries of
the ACM Hamiltonian, one can still obtain approximate solutions for the rotation-vibration
spectrum

E =







ω1(v1 +
1

2
) + ω2(v2 + 1) + κL(L+ 1) for n = 3

ω1(v1 +
1

2
) + ω2(v2 + 1) + ω3(v3 +

3

2
) + κL(L+ 1) for n = 4

The rotational structure of the ground-state band depends on the point group symmetry of the
geometrical configuration of the α particles and is summarized in Table 1.

The triangular configuration with three α particles has point group symmetry D3h [20].
Since D3h ∼ D3 × P , the transformation properties under D3h are labeled by parity P and
the representations of D3 which is isomorphic to the permutation group S3. The corresponding
rotation-vibration spectrum is that of an oblate top: v1 represents the vibrational quantum
number for a symmetric stretching A vibration, v2 denotes a doubly degenerate E vibration.
The rotational band structure of 12C is shown in the left panel of Fig. 1.

The tetrahedral group Td is isomorphic to the permutation group S4. In this case, there are
three fundamental vibrations: v1 represents the vibrational quantum number for a symmetric
stretching A vibration, v2 denotes a doubly degenerate E vibration, and v3 a three-fold
degenerate F vibration. The right panel of Fig. 1 shows the rotational band structure of 16O.

3. Electromagnetic transitions

For transitions along the ground state band the transition form factors are given in terms of
a product of a spherical Bessel function and an exponential factor arising from a Gaussian
distribution of the electric charges, F(0+ → LP ; q) = cL jL(qβ) e

−q2/4α [20]. The charge radius
can be obtained from the slope of the elastic form factor in the origin 〈r2〉1/2 =

√

β2 + 3/2α.
The transition form factors depend on the parameters α and β which can be determined from
the first minimum in the elastic form factor and the charge radius.

The transition probabilities B(EL) along the ground state band can be extracted from the
form factors in the long wavelength limit

B(EL; 0+ → LP ) =
(Ze)2

4π
c2L β2L ,
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Figure 1. (Color online) Rotational band structure of the ground-state band, the Hoyle band
(or A vibration) and the bending vibration (or E vibration) in 12C (left) [7], and the ground-
state band (closed circles), the A vibration (closed squares), the E vibration (open circles) and
the F vibration (open triangles) in 16O (right) [21].

Table 2. B(EL) values in 12C (top) and 16O (bottom).

12C Th Exp Ref

B(E2; 2+1 → 0+1 ) 8.4 7.6± 0.4 e2fm4 [25, 26, 27]
B(E3; 3−1 → 0+1 ) 44 103± 17 e2fm6 [25, 26, 27]
B(E4; 4+1 → 0+1 ) 73 e2fm8 [25, 26, 27]
M(E0; 0+2 → 0+1 ) 0.4 5.5± 0.2 fm2 [25, 26, 27]

16O Th Exp Ref

B(E3; 3−1 → 0+1 ) 215 205± 10 e2fm6 [28]
B(E4; 4+1 → 0+1 ) 425 378± 133 e2fm8 [28]
B(E6; 6+1 → 0+1 ) 9626 e2fm12 [28]
M(E0; 0+2 → 0+1 ) 0.54 3.55± 0.21 fm2 [28]

with

c2L =


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The good agreement for the B(EL) values for the ground band in Table 2 shows that both
in 12C and in 16O the positive and negative parity states merge into a single rotational band.
Moreover, the large values of B(EL;LP

1 → 0+1 ) indicate a collectivity which is not predicted
for simple shell model states. The large deviation for the E0 between the first excited 0+

(Hoyle) state and the ground state indicates that the 0+2 state cannot be interpreted as a simple
vibrational excitation of a rigid triangular (12C) or tetrahedral (16O) configuration, but rather
corresponds to a more floppy configuration with large rotation-vibration couplings. A more
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detailed study of the electromagnetic properties of α-cluster nuclei in the ACM for non-rigid
configurations is in progress.

4. Summary and conclusions

In this contribution, the cluster states in 12C and 16O were interpreted in the framework of the
ACM as arising from the rotations and vibrations of a triangular and tetrahedral configuration
of α particles, respectively. In both cases, the ground state band consist of positive and negative
parity states which coalesce to form a single rotational band. This interpretation is validated
by the observance of strong B(EL) values. The rotational sequences can be considered as the
fingerprints of the underlying geometric configuration (or point-group symmetry) of α particles.

For the Hoyle band in 12C there are several interpretations for the geometrical configuration
of the three α particles. In order to determine whether the geometrical configuration of the
α-particles for the Hoyle band is linear, bent or triangular, the measurement of a possible 3−

Hoyle state is crucial, since its presence would indicate a triangular configuration, just as for
the ground state band.

Finally, the results presented here for 12C and 16O emphasize the occurrence of α-cluster
states in light nuclei with D3h and Td point group symmetries, respectively.
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