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Abstract. This paper describes dynamic and thermodynamic (at 7' = 0) properties of mesons
in asymmetric matter in the framework of Chiral Perturbation Theory. We consider the effect
of nonzero isospin and strangeness chemical potentials on a mesonic system and report on the
corresponding phase diagram. We also study meson masses and mixing in the resulting normal
phase, pion condensation phase and kaon condensation phase. We find differences with previous
papers regarding meson masses and mixing in the condensed phases; the results presented here
are supported by theory group analysis and direct calculations. Pressure, density and equation
of state of the system at 7" = 0 and nonzero p; are calculated, finding remarkable agreement
with analogue studies performed by lattice calculations.

1. Introduction

Understanding the QCD phase diagram is important for many different phenomena, for exam-
ple the astrophysics of compact stars or heavy-ion collisions. It is known that depending on
the value of the isospin chemical potential, 7, and on the value of the strangeness chemical
potential, ug, three different phases can be realized: the normal phase, the pion condensed (7c¢)
phase and the kaon condensed (K¢) phase [1, 2, 3]. The realization of a mesonic condensate can
drastically change the low energy properties of matter, including the mass spectrum and the
lifetime of mesons.

Previous analysis of the meson condensed phases by QCD-like theories were developed in
[4, 5]. Pion condensation in two-flavor quark matter was studied in [2, 6] and in three-flavor
quark matter in [3]. In particular, the phase diagram as a function of y; and ug was presented
in [3]. Finite temperature effects in SU(2)r, x SU(2)g chiral perturbation theory (xPT) have
been studied in [7, 8, 9]. One remarkable property of quark matter with nonvanishing isospin
chemical potential is that it is characterized by a real measure, thus the lattice realization can
be performed with standard numerical algorithms [10, 11]. The mc and the K¢ phases have
been studied by NJL models in [12, 13, 14] and by random matrix models in [15]. All these
models find results in qualitative and quantitative agreement; in particular, the phase diagram
of matter has been firmly established. We have studied the masses and mixing of mesonic states
and we have found results that disagree with [3] that, up to our knowledge, is the only paper
in which they are studied.

The thermodynamic properties of the condensed phases have been studied by LQCD simulations
in [16, 17]. Previously, various results on the mc phase were derived in [9] by an NJL model. In
particular, the equation of state (EoS) of the NJL model was presented. Recently in [18, 19, 20]
a perturbative analysis of QCD at large isospin density has been presented. Those pQCD results
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are consistent with LQCD for u; 2 3my [20], where m, is the pion mass. At smaller values
of uy it seems that pQCD underestimates the energy density and it is not able to capture the
condensation mechanism. However, for small values of p; (and pg), xPT can be used.

In this article we briefly review how to include chemical potentials in x PT [21, 22, 23, 24, 25],
then we describe some phenomenological properties related to this inclusion, like the existence
of the different phases already listed and the changes in meson masses and mixing. We will
also show how the inclusion of chemical potentials affects meson properties [26]. Finally we will
study the effect of nonzero isospin and strangeness chemical potentials on the pressure, density
and equation of state of the system [27].

The paper is organized as follows. In Sec. 2 we describe the model and how it predicts
different phases. In Sec. 3 we show how group theory tools can be used to calculate the mass
eigenstates and the meson mixing in the condensed phases and we list and discuss the results
obtained. In sec 4 we study the termodynamic properties of the system. Finally, in Sec. 5, we
summarize the results.

2. Model

2.1. Lagrangian and definitions

In this section we briefly review the model that we are going to use in the following. It is the
one described in [3]. It is a chiral effective Lagrangian at the lowest order in the momenta. The
general O(p?) Lorentz invariant Lagrangian density describing the pseudoscalar mesons can be
written as [21]

F? F?
L= ZOTr(DZ,ED”ET) + ZOTr(XET +2XxT, (1)

where ¥ describes the meson fields, X = 2By(s+ip) represents scalar and pseudoscalar external
fields and the covariant derivative is defined as
i i
D% =0,% — 5[”#7 ¥] - i{altv X}, (2)
where v, and a, are vectorial and axial external currents, respectively. The Lagrangian has two
free parameters Fy and Bjy. Because this is an effective theory, they have to be fixed by mesons
phenomenology: they are related to the pion decay and to the quark-antiquark condensate,
respectively. See for example [21, 22, 23, 24, 25].
If the meson field transforms as
> — RYLT, (3)

the Lagrangian density possess the symmetry SU(Ny)r, x SU(Ny)g and the chiral symmetry
breaking corresponds to the spontaneous global symmetry breaking SU(Ny)r x SU(Ny)r —
SU(Ny)r+r- In standard xPT, the mass eigenstates are charge eigenstates as well. This ensures
that mesons are particles with a well defined mass and charge. If the system is in a medium
the ground state can be tilted to different vacua that can also be charged with respect to some
of the SU(3) generators. This would imply that the eigenstates will not be eigenstates of the
broken charges. The effects of a medium can be taken into account by considering appropriate
external currents in Eq. (1).

At vanishing temperature the ground state is determined by maximizing the Lagrangian
density with respect to the external currents. The pseudoscalar mesons are then described as
oscillations around the vacuum. We use the same nonlinear representation of [3] corresponding
to

Y =udu with u=eT9?% (4)

where T, are the SU(Ny) generators and ¥ is a generic SU(Ny) matrix to be determined by
maximizing the static Lagrangian. The reasoning behind the above expression is that under
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SU(Ny¢)r, x SU(N¢)r mesons can be identified as the fluctuations of the vacuum as in Eq. (3)
with 0 = —0L = ¢,,.

In the following we will assume that a, = 0, p = 0, X = 2GM, where M is the Ny x Ny
diagonal quark mass matrix and G is a constant, that with these conventions is equal to By.
Moreover, we will assume that

v’ = 2u6"° (5)

meaning that the vectorial current consists of the quark chemical potential, with p a SU(Ny)
matrix in flavor space. Its explicit expression in our case of interest, ie SU(3), is:

1 1 1

UB — s 2
1B — A

1S
—[I, =B — =T+ = —=A
oHI: g HB Ms) 3 T 3+\/§87
(6)
It is important to remark that this model only holds for |up| < 940 MeV, |ur| < 770 MeV and
lns| < 550 MeV [3].

. . (1 1
po= diag (pu, pa, p1s) = diag <3MB +oHI g

2.2. Ground state and different phases
To find the ground state we have to substitute (4) in the Lagrangian (1). It is not necessary to
use a complete SU(3) parametrization for X, but it is sufficient:

- 1 0 0 cosa sina 0 1 0 0
Y= 0 cosB —sinf —sina cosa 0 0 cosf sinB |, (7)
0 sinf8 cosf 0 0 1 0 —sinf8 cosp

because ¥ has to be orthogonal to the chemical potential in the SU(3) generator space [26].
Substituting (7) in (1) and maximizing, we find three different vacua, thus there are three ground
states, each one describing a different phase [3]:

e Normal phase:

1
wr < my ps <mg — §MI, (8)
characterized by B
ay =0, pBye(0,7), Xy=diag(l,1,1). (9)
e Pion condensation phase:
—m? [ (m2 = )2 + dmi
wr > My ; (10)
2pr
2
characterized by cos a,; = (%) , Br=0,
cos a sina, 0
- T g 1+2 -1
Yr=| —sina, cosa, 0 | = wf—i-i)\g sin o + %)\8.
0 0 1 V3
e Kaon condensation phase:
1 —m? [ (m2 — )2 + dmiepd
ns > mpg — 5#[ ) (11)
2ur
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Figure 1. Phase diagram of our model in presence of nonzero isospin and strangeness chemical
potentials and at 7= 0 [3].

2
1 pr— 7mK pr—
characterized by cos ax = (%M-ﬁ-us) Pr=m/2,

= cosa 0 sina 1+ 2cosagk cosarg — 1
Sk = 0o 1 0 |-= I+ (\/g)\g—)\gg)—l-i)\g,sinoz[(.

—sina 0 cosa 3 2\/§

Note that the kaon condensation can only happen for

_ My
/LS>/LS:mK—7. (12)

These results are summarized in figure 1 [3].

3. Meson Masses and Mixing

3.1. Mizing

As we have seen in Sec. 2.2 the ground state in the condensed phases is not diagonal and thus
has SU(3) charges that cause symmetry breaking that will lead to mix mesons. Studying the
breaking pattern can guide us to identify the allowed mixing in the condensed phases.

The starting Lagrangian has an SU(3)1 x SU(3) g symmetry, broken to SU(3)y by the quark
masses. The introduction of chemical potentials via the external current (5) further reduces this
symmetry to U(1)r+r X U(1)r+r, meaning that the A3 and Ag terms in (5) break isospin and
hypercharge conservation. When the system enters one of the condensed phases the vacuum
acquires a charge and thus there is no symmetry left.

In all of these cases we can use the quantum numbers of the SU(2) subgroups of SU(3) to
label the states and to find out which ones can mix. We only need two of them, because they
are not independent. The states that can mix and the related quantum numbers are shown in
table 1

Unfortunately, this is not sufficient to determine if 7y and 1 can mix, because they do not
have a well defined U and V spin, so we have to study deeply how the ground state affects them.
Let us first consider the normal phase. In the normal phase there is no operator that can induce
the mixing of the mesonic states, thus they remain unchanged but the Q3 and Qg charges will
induce Zeeman-like mass splittings.

In any of the condensed phases, there is an additional charge that is spontaneously induced,
and the corresponding operator will lead to mixing.
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Mixing states (T,U)
T, T (1,1/2)
K., K_ (1/2,1/2)
Ko, Ko (1/2,1)

Table 1. Mixing mesons with the corresponding T-spin and U-spin quantum numbers. These
quantum numbers label the SU(3) subspace spanned by the corresponding mesonic states. The
o and the n do not appear because they are not U-spin eigenstates.

Let us first focus on isospin (or T-spin). We have to consider two cases. Suppose that the
vacuum has a charge that commutes with 72, as in the m¢ phase, say the charge corresponding
to To = ¢(T- — T4 ), see Eq. (11). The T4 operators can induce mixing among the charged
pions and among the kaons. On the other hand, T-spin conservation does not allow the
|m0) = |T' = 1,T3 = 0) to mix with the |n) = |T"= 0,73 = 0).

Now suppose instead that the vacuum has a charge that does not commute with 72 as in
the Kc phase. Any operator that does not commute with isospin will commute with U-spin
or with V-spin. In the K¢ phase Q5|0) # 0, then the vacuum is not invariant under this
charge. However, since [T5, U] = 0 it follows that U-spin is conserved. The lowering and raising
operators inducing the mixing will be Uy. Regarding the 7y and the 7, in this case we have

that [U = 1,U3 = 0) and |U = 0,Us = 0) do not mix. Since |U = 1,Us = 0) = |7r0>+f|77> and
U =0,Us =0) = flmﬁ ) these will be the mass eigenstates.

3.2. Masses

The mass eigenstates are found diagonalizing the Lagrangian in the different phases. They
present the mixing predicted by the group theory analysis of the previous subsection. Masses and
mixings have been calculated [26]. The procedure is straightforward: we have to diagonalize the
quadratic part of the Lagrangian by solving the related secular equation, obtaining the masses
and subsequently the eigenstates. The resulting expressions are quite involved so we only show
plots of the masses 1y dependence for different values of pg in figure 2.

4. Thermodynamic B
The pressure of the system can be found substituting > — ¥ in 1. In the different phases we
get:

2 2
Po=0  pfo= Fory (1 - mi) PLS = Forc <1 - me)
2 ni 2 Hic

with purx = pr/2 + ps. It is important to observe that the expressions for the pressure in the
condensed phases are exactly the same if we change pu; — ux and m,; — mg. Number density
and equation of state can be derived using;:

dpLo
O

niLo = and €= pnr+ psng —p, (13)

where the index ¢ represents I=isospin or K=kaon. In the 7#C phase we obtain:

m4 2 m2 m4
I I I
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Figure 2. Mass spectrum of the pseudoscalar mesonic octet. Left panel: results obtained for
s = 200 MeV. The vertical solid line represents the second order phase transition between
the normal phase and the pion condensation phase. In this case the strange quark chemical
potential is below the threshold value for kaon condensation, 425 MeV, thus the kaon condensed
phase does not take place for any value of ;. Central panel: results obtained for ug = 460
MeV. The vertical solid line represents the second order phase transition from the normal phase
to the kaon condensation phase. The dashed line corresponds to the first order phase transition
between the kaon condensed phase to the pion condensed phase. Right panel: results obtained
for ug = 550 MeV, corresponding to the largest value of ug.

while the analogous results in the kaon condensation phase can be obtained substituting
my — mg and ur — pg, see [17, 27]. To compare the xPT energy density with the results
obtained by LQCD simulations in [16] and by pQCD in [20], we divide it by the Stefan-Boltzmann
limit, which has been defined in [16] as esp = 9u?/(472) and describes a cold, degenerate gas
of weakly interacting quarks which is the limit of our system if there was no interactions. In
Fig. 3 we report our ratio €], /esp and the results of [16] and [20]. We immediately notice that
the xPT curve perfectly captures the peak structure at low uj, while it begins to depart from
the LQCD results after puy ~ 2my, indicating the breakdown of the LO approximation. An
interesting result is that within our framework we obtain an analytic expression for the position
of the peak, which for the mc phase is given by ,uII)eak = (\/ﬁ — 2)1/2 my ~ 1.276 m,; and is

independent of fr. This result is very close to the LQCD result obtained in [16], where the
peak

values p; = {1.20,1.25,1.275}m, have been obtained considering different spatial volumes
L3 with side L = {16, 20,24}, respectively. The continuum-linearly-extrapolated value for the
peak position is u?eak = 1.30 m,.

It is not clear if the peak point is related to some undergoing physics. In our model the pion
condensate has reached a significant value at that point, almost approaching its asymptotic limit
B, see Fig. 4, so we tend to exclude that the peak appearance is related to the occurrence of
the condensation.

More specifically, the pion condensate can be evaluated by introducing external source terms in
the chiral Lagrangian and by differentiating with respect to them. After the phase transition it

pea

grows as (1) = By/1 —mi/u} [3, 5], so that at u} ¥ it reaches already ~ 79% of its asymptotic
value. We are therefore more inclined to interpret this peak structure as a consequence of the
filling of the condensate, rather than of the onset of its formation, which at zero-temperature
should occur at uy = m,. We also obtain an analytic expression for the ratio at the peak

€

€SB

_ AWVI3 - 5)r® f7

peak__ 9(&/{§ — 2) ;ﬁgr’ (15)

which would give information on the fr/m, scaling if precise LQCD data were available. It is
worth mentioning that the above results hold in the K¢ phase if one considers esp = 93,/ (472).
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Figure 3. Energy density over the Stefan-Boltzmann limit. The lattice points have been
obtained at T' = 20 MeV; the colors correspond to the different lattice volumes considered
in [16]. The orange dotted line corresponds to the pQCD results of [20]. The dashed black line
corresponds to our results.

Then, we obtain ,u‘}fak = (V13 — 2)'?my and an expression analogous to Eq.(15), with

My — MEK.

From Fig. 3 it seems that for u;y > 2m, the LO xPT breaks down, resulting in an
underestimate of the energy density. The basic reason is that for large pu; we have that
€6 o fﬁ,u% from Eq. (13), while pQCD correctly predicts €™ u‘}. At the next-to-leading
order (NLO), it is possible to show that the xPT energy density includes a term proportional to
(211 + 21y + I3)p, where Iy, I and I3 are NLO low energy constants [24]. Comparing our results
with the pQCD energy density we obtain

3 (eqop  2f7n?
872 \ esp 9u?

2y 20y 4y = +0UirY) (16)

leading to 2l + 2lo + I3 ~ 0.6 x 1073 for u; = 3m, consistent with the empirical values of the
low energy costants [24].
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Figure 4. xPT results for the ratio €¢/esp (solid line) and the pion condensate normalized to
its maximum value B (dashed blue line).

5. Conclusion
We have shown how meson physics in presence of chemical potentials can be described using
Chiral Perturbation Theory. There are three different phases: a normal phase, a pion
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condensation phase and a kaon condensation phase. The condensed phases ground states have
a charge and thus can generate mixing among mesons.

In this context we have illustrated how the mixing is influenced by model symmetries and that
group theory constrains the mixing possibilities. These results, obtained by group theory alone,
are expected to hold in any theory describing meson states. We have then described mesons
masses in the three phases, calculating them from the Lagrangian (1). These masses are in
perfect agreement with the group theory reasoning.

Finally we have derived the pressure and equation of state of the system at T = 0, comparing
them with the equivalent results obtained in lattice simulations and obtaining a very good
agreement on a non trivial feature like a peak structure in the meson energy density over the
Stefan Boltzmann one.

These results can be applied for example in the physics of compact stars, the study of cosmic
rays and the study of in medium nuclear decays.
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