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Abstract. The properties of spherically symmetric static compact stars are studied in the
Randall-Sundrum II type braneworld model assuming that the spacetime outside the star
is described by a Schwarzschild metric. The integration of the stellar structure equations
employing the so called causal limit equation of state (EoS) shows that the equilibrium solutions
can violate the general relativistic causal limit. An analysis of the properties of hadronic and
strange quark stars using standard EoSs confirm the same result: there is a branch in the mass-
radius diagram that shows the typical behaviour found within the frame of General Relativity
and another branch of stars that are supported against collapse by the nonlocal effects of the bulk
on the brane. Stars belonging to the new branch can violate the general relativistic causal limit,
may have an arbitrarily large mass, and are stable under small radial perturbations. If they
exist in Nature, these objects could be hidden among the population of black hole candidates.
The future observation of compact stars with masses and radii falling above the causal limit of
General Relativity but below the Schwarzschild limit maybe a promising astrophysical evidence
for the existence of extra dimensions.

1. Introduction

Braneworld models represent the universe as a three-dimensional brane where elementary
particles live embedded in a higher-dimensional spacetime called the bulk, only accessed by
gravity [1]. Within this framework, astrophysical and cosmological models can be constructed
where the gravitational effect of extra-dimensions can be explored. In Randall-Sundrum models,
ultraviolet modifications to General Relativity are introduced such that significant deviations
from Einstein’s theory occur at very high energies, e.g. in the early universe, in gravitational
collapse and in compact objects.

In the Randall-Sundrum model, our universe is a brane embedded in one extra dimension
(the bulk) which is a portion of a 5D anti-de Sitter spacetime (AdSs); i.e. the extra dimension is
curved or warped rather than flat. At low energies, gravity has an exponentially suppressed tail
into the extra dimension due to a negative bulk cosmological constant, A5 = —6/¢2 where £ is the
curvature radius of AdSs. The brane gravitates with self-gravity in the form of a brane tension
A, where A = 3M7/(4m(?) and M7 = MZ(. On the brane, the negative As is counterbalanced
by the positive brane tension .

The Einstein’s field equation takes the conventional form but with an effective energy-
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momentum tensor T’ ﬁ,f,f, i.e., it reads:

G =87G TSy, (1)
where G, is the usual Einstein field tensor, and we consider ¢ = 1.
The effective energy-momentum tensor has the form [2]
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where the first term contains the standard energy momentum tensor; e.g. for a perfect fluid we
have T, = puyu, + ph,,, where p is the pressure of the fluid, p is its energy density, u* is the
four-velocity and h,, = g, + uyu, is the projection orthogonal to u#. The second and third
terms include modifications with respect to the standard 4D Einstein’s field equation. The bulk
correction includes a local term and a nonlocal one (second and third terms respectively) [1].
For a perfect fluid, the local contribution reads

1, 1
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The nonlocal contribution for static spherical symmetry reads:
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where U and P are respectively the nonlocal energy density and nonlocal pressure on the brane
and r, is a unit radial vector. Notice that, as A — oo, the bulk corrections vanish and General
Relativity is recovered.

The braneworld generalization of the stellar structure equations for a static fluid distribution
with spherical symmetry has been derived by Germani and Maartens [3], and read:
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To solve Egs. (5)—(8) we need an equation of state p = p(p) and a relation of the form P = P(U)
relating the nonlocal components (“dark” equation of state).



Compact Stars in the QCD Phase Diagram V IOP Publishing
IOP Conlf. Series: Journal of Physics: Conf. Series 861 (2017) 012002 doi:10.1088/1742-6596/861/1/012002

Two of the boundary conditions of the stellar structure equations on the brane are the same

as for the standard General Relativistic equations. Specifically, at the center of the star (r = 0)
the enclosed mass is zero:

m(r=0) =0, (11)

and at the surface of the object the pressure vanishes:
p(R) = 0. (12)

The remaining boundary condition is determined by the Israel-Darmois matching condition
[Gr”]s, = 0 at the surface of the object ¥, where [f]s = f(RT) — f(R™).

In brane-world models, the Schwarzschild solution is no longer the unique asymptotically flat
vacuum exterior (for a discussion on the validity of the Schwarzschild exterior see Ref. [4] and
references therein). In general, the exterior carries an imprint of nonlocal bulk graviton stresses
and knowledge of the 5D Weyl tensor is needed as a minimum condition for uniqueness. Here,
for simplicity, we focus on a class of models with a Schwarzschild exterior (Ut = PT = 0).
We also assume P~ = 0, which is consistent with the isotropy of the physical pressure in the
star. As a consequence, the interior must have nonvanishing nonlocal Weyl stresses (U~ # 0).
Therefore, the boundary condition for & at r = R reads:

(47G)*p*(R) + U™ (R) = 0. (13)

Due to the latter boundary condition at the stellar surface, the numerical integration of the
structure equations is less straightforward than for the standard structure equations in General
Relativity. In the present case, a shooting method is used in order to match iteratively the
boundary condition for 4~ at » = R (for more details see Ref. [4]).

2. The causal limit in braneworld models

The equation of state of neutron star matter can be determined with confidence up to ~ 2pga¢,
being psqr ~ 151 MeV/ fm3 the nuclear saturation density. For larger densities, the determination
of the EoS depends strongly on the knowledge of strong interactions in a regime that cannot be
reached experimentally. As a consequence, there is a large amount of high-density EoSs in the
literature that incorporate several aspects that may play a crucial role at the inner core of the
star, such as three-body forces, bosonic condensates, hyperonic degrees of freedom and quark
matter [5, 6].

An important aspect of neutron stars within the frame of General Relativity, is that there
exists a maximum gravitational mass above which there are no stable stellar configurations.
The maximum mass exists no matter what the EoS, but its determination depends on a deep
comprehension of the EoS up to several times psq:. However, using the so called causal limit EoS,
it is possible to circumvent the uncertainties related to the properties of high-density matter and
obtain upper bounds to the maximum allowed mass of a neutron star [5, 6]. The causal limit EoS
can be constructed by using a detailed EoS at density ranges where they can be safely regarded
as accurate and imposing generic constraints at densities exceeding some fiducial density, e.g.,
subluminal sound velocity and thermodynamic stability (see e.g. [5, 6, 7]). Here, we adopt
the well established Baym, Pethick, and Sutherland (BPS) EoS [8] at densities below a fiducial
density p;, and a causal equation of state (i.e. sound velocity = speed of light) p = p — a above
pt [6, 7). Since both EoSs are matched at an energy density p; and a pressure p;, the constant
a in the high density EoS is given by a = p; — pt, where p; and p; also fulfill the BPS EoS.

Varying the value of a and integrating the stellar structure equations we obtain the results
shown in Fig. 1. Within General Relativity, the causal limit EoS allows obtaining a straight
line in the mass-radius diagram that connects the maximum mass stars for different values of
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Figure 1. Mass-radius relationship for the causal limit EoS matched continuously with the BPS
EoS in (a) General Relativity and (b) braneworld models. Both EoSs are matched at different
fiducial densities that lead to different values of a = py — py. In the case of General Relativity,
the dots over the curves indicate the maximum masses. For braneworld stars, the values of A
lead to M5 = (%77)\MPQ)1/6 ~ 2000 TeV; i.e. larger than 10 TeV, in compatibility with LHC.

a. Above such line, known as causal limit, stellar configurations are not allowed. The forbidden
region is given by [6, 5, 9, 10]:
M > 0.345R, (14)

(Aj\f@) > 0.234 (il) . (15)

In the case of braneworld stars, we find that for small masses, the curves show the typical
behavior found within the frame of General Relativity. Specifically, very small mass stars have
very large radii, and as the mass increases above a few tenths of solar masses the radii fall
within a range of few kilometers around ~ 10 km. Nevertheless, for large mass objects, local
high-energy effects as well as nonlocal corrections lead to significant deviations with respect to
General Relativity. At around 1.5 —2 Mg, the M(R) curves bend anticlockwise as in the general
relativistic case. However, instead of reaching a maximum mass as in General Relativity, the
curves bend once more (clockwise) for larger masses and thereafter they increase roughly linearly
(see Fig. 1).

A striking feature of this behavior is that once the M — R curves bend clockwise they may
fall above the causal limit obtained within General Relativity (c.f. Egs. (15) — (14)). It can
also be checked that as the masses and radii increase, the curves tend asymptotically to the
Schwarzschild limit M = 2R.

Since the M — R curves for the causal EoS approach asymptotically the line M = 2R, but do
not go beyond it, the Schwarzschild limit M = 2R is a good representation of the causal limit
in the braneworld model. In other words, the equilibrium solutions found in the braneworld can
violate the limit of causality for General Relativity (Egs. (15) — (14)) and, for sufficiently large
mass, can occupy the region between the straight lines shown in Fig. 2.

or, equivalently:

3. Hadronic and strange stars in braneworld models
Now, we consider two representative equations of state for hadronic and strange quark stars. To
describe hadronic matter, we use a relativistic mean-field model which is widely used in stellar
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Figure 2. The causal limit for General Relativity and the Schwarzschild limit M = 2R. In the
braneworld model, static stellar configurations fulfilling a causal EoS (sound velocity < speed
of light) can occupy the region between both straight lines.

structure calculations within General Relativity. We adopt the following standard Lagrangian
for matter composed by nucleons, hyperons and electrons [5, 6],

_ » 1
Ly =Y ¥p[yu(idh — gopw" — §ngT~ﬁ“)
B
1 m 2 2 1 3

- ('I?’LB - gaBU)]¢B + 5(0M00 g —m,0o ) - gbmn(gaa)
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T 5 -
—i—im%pu.ﬁ” + Zd}L[wua” —mplYr. (16)

L

Leptons L are treated as non-interacting and baryons B are coupled to the scalar meson o, the
isoscalar-vector meson w,, and the isovector-vector meson p,. The five constants in the model are
fitted to the bulk properties of nuclear matter; here we use the parametrization GM1 [11]. The
explicit form of the EoS obtained from the above Lagrangian as well as the coupling constants
used for the GM1 parametrization can be found in [12, 13, 14, 15] and references therein. At
low densities we use the Baym, Pethick and Sutherland model [8].

For quark matter we use the MIT bag model with zero strong coupling constant and massless
quarks. The equation of state adopts the simple form p = 3p+ 4B, where B is the bag constant.
Witten [16] conjectured that, at zero pressure and temperature, three flavor quark matter may
have an energy per baryon smaller that ordinary nuclei. This would make strange quark matter
the true ground state of strongly interacting matter and would lead to the existence of strange
quark stars, i.e. stellar objects completely composed by strange quark matter [17, 18]. Within
the MIT bag model for massless quarks and zero strong coupling constant, the Witten hypothesis
is verified if the bag constant is in the range 57 MeV /fm3 < B < 94MeV /fm3. In this paper we
consider B = 60 MeV /fm3.

In Fig. 3 we show the mass-radius relationship for strange quark stars and for hadronic stars.
We also include the causal limit in General Relativity and the Schwarzschild limit M = 2R.
For small masses (< 1.5 — 2Mg), the curves show the typical behavior found within the frame
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Figure 3. Mass-radius relationship for several values of the brane tension A: (a) strange quark
stars and (b) hadronic stars.

of General Relativity. Specifically, very small mass hadronic stars have very large radii, while
strange stars follow roughly M oc R3. For large mass objects, local high-energy effects as well
as nonlocal corrections lead to the same deviations with respect to General Relativity that
were found in the previous section for the causal EoS. Instead of reaching a maximum mass as
in general relativity, the M (R) curves have a new branch that approaches asymptotically the
Schwarzschild limit M = 2R. In some cases there is a local maximum in the M (R) curves.

4. Stability of stellar configurations
In the previous sections we showed that in braneworld models there is a new branch of stellar
configurations that is not present within General Relativity. Since only compact objects in stable
equilibrium are acceptable from the astrophysical point of view, we will check here the stability
of these models. A well known static criterion that is widely used in the literature states that a
necessary condition for a model to be stable is that its mass M increases with growing central
density, i.e.
M > 0. (17)
dpe
The latter is a necessary but not sufficient condition.

Here, we employ a sufficient criterion which enables one to determine the precise number of
unstable normal radial modes using the M (R) curve [5, 19]. According to such criterion, at each
critical point of the M (R) curve (local maxima or minima) one and only one normal radial mode
changes its stability, from stable to unstable or vice versa. There are no changes of stability
associated with radial pulsations at other points of the M(R) curves. Moreover, one mode
becomes unstable (stable) if and only if the M (R) curve bends counterclockwise (clockwise) at
the critical point.

In our previous results we found two qualitatively different types of M (R) curves. One type
presents one local maximum and one local minimum in M (R) (and in M (p.) as well). The other
one has no critical points. These two types are represented separately in Fig. 4, where we show
the M(R) and M (p.) curves for strange quark stars for two different values of A (for simplicity
we do not show hadronic stars because the stability analysis is completely equivalent, as we shall
see below).

In order to analyze the stellar stability using the above criterion, we assume that the low
mass branch (up to < 1.5—2M)) of the M (R) curves is stable for all radial modes, as it is in the
general relativistic case. For the curves with two critical points (panels (c) and (d) of Fig. 4),




Compact Stars in the QCD Phase Diagram V

IOP Publishing

IOP Conlf. Series: Journal of Physics: Conf. Series 861 (2017) 012002

doi:10.1088/1742-6596/861/1/012002

- - - 1=(551 MeV)* - T 1=(551 Mevy’ ;
7
8t 8t |
—_ - —_ i
i s % !
A 6F - A 6} |
O 7 (T |
1S e € !
c . c
] - o |
S 4r e 3 4r ‘
—_— P b 7
= . = R2 -7
R2 e Rl o= A" -
2t “aR1 R
4 ’
7z s !
. )
.- @ / (b)
0 ==T 1 1 1 1 1 0L— v v v v v
b 6 10 ” 18 > % 0 1000 2000 3000 4000 5000
Rkm] p [MeV/fim’]
6 [~ A=(724 MeV)! ' ' ' 6L —--m A=(724 MeV*
5t 5[
- -
2 g
® 4r . @ 4r
€ €
& 3t . Lo 3r
2 7 2 M1
s S M1 S olnq e M2 R2 -
2+ RZ‘;NTE" ._.-.«IA R1 - 2 R1‘I‘ I, i A
1 . ] 1
o © S .
02 == é 1‘0 1‘4 1‘8 0 2000 4000 6000 8000 10000 12000 14000 16000
Rkm] p[MeV/im’]

Figure 4. Analysis of stellar stability in braneworld models based on the critical points in the
M versus R diagram. The curves represent strange quark stars but the stability analysis for
hadronic stars is completely equivalent. Figures (a) and (b) correspond to a value of the brane
tension, A = (551 MeV)*, that results in no critical points. Figures (c) and (d) correspond to
a different value of the brane tension, A = (724 MeV)?, that results in a local maximum and a
local minimum in both the M (R) and M (p.) curves.

the M(R) curve bends counterclockwise at the local maximum and the fundamental oscillation
mode becomes unstable. However, at the local minimum the fundamental mode becomes stable
again because the curve bends clockwise there. Beyond the local minimum there are no more
critical points and all the radial modes remain stable. In the case without critical points (panels
(a) and (b) of Fig. 4), the whole sequence remains stable for all radial modes provided that
the low mass configurations are stable. Thus, we can conclude that the branches that approach
asymptotically to the Schwarzschild limit are always stable under small radial perturbations,
and therefore, stellar configurations of arbitrarily large mass would be allowed within braneworld
models.

The previous analysis concerns the stability of non-rotating stars. However, if the star rotates,
there is a handful of perturbations to be considered for a full stability analysis. For example,
rapidly rotating neutron stars can be unstable to the gravitational-wave-driven Chandrasekhar,
Friedman and Schutz (CFS) mechanism [20, 21]. These instabilities deserve further study within
braneworld models.
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5. Conclusions

In this work we have studied the structure of spherically symmetric static compact stars in
the Randall-Sundrum II type braneworld model assuming that the spacetime outside the star
is described by a Schwarzschild metric. We obtain the low mass branch of compact star
configurations already known from general relativistic calculations, but we also find a new
branch that approaches asymptotically to the Schwarzschild limit which is always stable under
small radial perturbations. As a consequence, stellar configurations of arbitrarily large mass,
supported against collapse by the nonlocal effects of the bulk on the brane, are allowed within
braneworld models. It is worth emphasizing that black holes are still possible within the here
studied braneworld models. Moreover, the stellar configurations that asymptotically approach to
the Schwarzschild limit are expected to be stable under small perturbations, but not necessarily
under large ones. Therefore, a very large mass braneworld compact star could collapse into a
black hole if strongly perturbed in a catastrophic astrophysical event, e.g. in a binary stellar
merging.

From the astrophysical point of view, the existence of more than 20 compact objects, whose
masses are in the range M = 5 — 30M,, has been confirmed via dynamical observations. These
objects are usually assumed to be stellar mass black holes but, strictly speaking, they are only
black hole candidates. They are located in X-ray binary systems, where the X-rays are produced
by gas that flows from the companion star on to the compact object via an accretion disk. The
strongest argument for identifying them as black holes is that they are sufficiently massive and
compact, and observations could not be matched with any object in stable equilibrium other
than a black hole. However, this by itself does not prove that these objects are true black
holes, defined as objects with event horizons [22]. At least some black hole candidates could,
in principle, be exotic objects made of some kind of unusual matter that enables them to have
a surface (no horizon), despite their extreme compactness. The hypothetic brane world stars
discussed in this work fall in this category, and at least in principle, they could be hidden among
the population of black hole candidates. While a number of tests have been devised to check
whether black hole candidates have a surface, at present all evidence is still indirect.

As explained above, the very existence of the new branch of large mass objects can be tested
through the observation of masses and radii of compact stars falling above the causal limit
of General Relativity but below the Schwarzschild limit. If found, such objects could be an
astrophysical manifestation of the existence of extra dimensions.
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