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Abstract. In this experimental work, we studied the excitation function of 
nat

Ti(d,x)
48

V nuclear 

reactions from 24 MeV down to threshold energy. Natural titanium foils were arranged in the 

popular stacked-foil method and activated with deuteron beam generated from an AVF 

cyclotron at RIKEN, Wako, Japan. The emitted γ activities from the activated foils were 

measured using an offline γ-ray spectrometry. The present results were analyzed, compared 

with earlier published experimental data and also with the evaluated data of Talys code. Our 

new measured data agree with some of the earlier reported experimental data while a partial 

agreement is found with the evaluated theoretical data. In addition to the use of 
48

V as a beam 

intensity monitor, recent studies indicate its potentials as calibrating source in PET cameras 

and also as a (radioactive) label for medical applications. The results are also expected to 

further enrich the experimental database and also to play an important role in nuclear reactions 

model codes design. 

1. Introduction 

The use of short-lived positron emitting radionuclides in medical diagnostic procedures is nowadays a 

very well developed technique, most especially as imaging modality in positron emission tomography. 

In such procedures, the short-lived radionuclides, like 
15

O (T1/2= 2 min), 
11

C (T1/2 = 20.4 min) or 
18

F 

(T1/2 = 110 min), are usually labeled with pharmaceuticals of biological origin. By using these formed 

radiopharmaceuticals (e.g 
11

CH3I, 
18

FDG) with PET cameras, excellent images of heart, brain or 

tumors can be obtained for different kind of medical examinations. However, the short-lived nature of 

these positron emitters is usually a disadvantage when performing studies of slow biological processes 

[1]. The longer lived positron emitters (also known as non-standard positron emitters or Innovative 

PET radionuclides) have been reported as more suited to the study of slow metabolic activities and to 

labelling of organic compounds [2]. The decay properties of the longer-lived radionuclides play an 

important role in obtaining quality and volume of images as it allows ample time for image 

measurement during biological studies. 

The usage of metallic titanium (Ti) in medical field is wide ranging. Since it has not been known to 

react with human body, titanium metal is widely used in several biological implants such as artificial 

hips and formation of pins for setting bones [3, 4]. On the other hand, charged particle bombardment 

of natural or enriched titanium isotopes produce several radionuclides useful in medical and biological 

fields. The production of 48
V via proton or deuteron has been reported by several studies. Vanadium-

48 (T1/2=15.9735 d), a positron emitting radionuclide, which decays to stable 
48

Ti by EC (50.1%) and 

β
+
(49.9%), find its acceptance as a monitor radioisotope mainly due to its decay characteristics and its 

relatively long half-life.  The investigated radionuclide (
48

V) is recently finding an increasing 
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potentials in different fields such as, from being radioactive tracer in biological processes [5] and 

material science [6] studies to its applicability in renal artery brachytherapy procedure [7]. 

Furthermore, 
48

V was associated with some important biochemical characteristics such as anti-

carcinogenic effect and thus tipped to be labeled with some compounds for in vivo studies [8]. In 

addition, a conducted study on ‘alternative radionuclide’ to the conventional use of 
68

Ge (T1/2 =271 d) 

in PET to further improve the quality of images has suggested the use of 
48

V as a transmission source 

for correction of possible attenuation in the positron emission tomography technique [9]. Therefore, 

the need of precise measurement of excitation function for 
48

V is very important. 

An extensive survey on the reported experimental data on production of the beam monitoring and 

medically important 
48

V via deuteron bombardment route indicated several studies are available. 

However, there exist discrepancies among the experimental literature, leading to the need of more 

measurements. In beam monitoring purpose and medical applications, high accuracy of radionuclide 

cross-sections are especially important and therefore the need for additional measurements are vital.  

Present study reports new experimental cross-sections of 
48

V via deuteron bombardment on natural 

titanium foils. 

2. Experimental setup and Analysis 

Present study was performed using similar main experimental procedures to some of our previous 

works [10-14].  The irradiation of target foils was performed using the well-established stacked foil 

activation technique while measurements of activities of the 
48

V was achieved via HPGe γ-ray 

spectrometry. The excitation function of 
48

V radionuclide has been reported in the energy region of 2.5 

to 23.8 MeV.  Additional details relevant to present study are explained under the sub-sections below. 

2.1 Targets, bombardment and activity measurements 

Metallic titanium (20.32-μm thick; 99.99% purity; Goodfellow, UK) foil of natural isotopic abundance 

(
46

Ti: 8.25 %; 
47

Ti: 7.44 %; 
48

Ti: 73.72 %; 
49

Ti: 5.41 %; 
50

Ti: 5.18 %) [15] was used as the primary 

target material.  For beam monitoring and additional excitation functions measurements, several high 

purity (99.99% purity; Goodfellow, UK) natural metallic foils of nickel, and platinum were interleaved 

between the titanium foils in the stack. The target foils were weighed with high precision electronic 

balance for precise determination of foil thickness. A stack was prepared with uniform foil dimensions 

of 15 × 15 mm
2
 following the size of the target holder to ensure proper focusing of the incident beam 

to center of the stack. The prepared stack was then held in a water-cooled target holder, which serves 

as a Faraday cup and then bombarded for 2.0 h with 24-MeV deuteron beam of characteristic average 

beam current of about 200 nA, from the AVF cyclotron of RIKEN RI Beam Factory. Through a 

tantalum slit in the particle exit channel of the cyclotron, the beam was collimated to 9-mm diameter 

onto the target foils. The whole processes of stack preparation, irradiation and activity measurements 

were carried out at the Nishina Center for Accelerator-Based Science, RIKEN, Wako, Saitama, Japan. 

The emitted γ-rays were measured without any chemical separation using a high resolution HPGe γ-

ray spectrometer (ORTEC; GEM-25185P; 55.1-mm crystal diameter and 52.0-mm thickness; 

operating voltage: +2000 V; relative efficiency: 25%) which was coupled to a 4096 multi-channel 

analyser and other associated electronics. A cooling period of 9 to 10 days were allowed before the 

measurements of this radionuclide based on its half-life so as to ensure interference free cross-

sections. The measurements were repeated several times at different source-to-detector distances. 

Similarly, all measurements were done with consideration of dead time less than 10 % by adjusting the 

source to detector distances. The gamma analysis of the spectra was done using the Maestro (Ver. 

7.01; ORTEC) gamma vision program. 

The efficiencies of the detector used at various source-to-detector distances were evaluated using 

multi-nuclide γ-ray standard source obtained from DBA Isotopes Products Laboratories (USA). 

Further details of major procedure involved in the calculations of the efficiencies at various source-to-

distances were earlier reported in our similar studies [14]. 
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2.2 Determination of beam intensity, foil energies and cross-sections 

The beam intensity was determined from measured activity of 
nat

Ni(d,x)
61

Cu from the front foil facing 

the beam,  using the IAEA [16] 
nat

Ni(d,x)
61

Cu recommended monitor reaction cross-section. The 

intensity was considered as a constant in the stack and was used to deduce cross-sections for each foil 

in the stack. The uniformity of the deuteron beam intensity along the irradiated foils was further 

ascertained by calculating cross-sections of 
61

Cu from the other Ti foils in the stack, and comparing 

with the IAEA [16] recommended values. The presence of other metallic foils of different densities 

and thicknesses helped in slowing down the incident deuteron beam along the stack. The degradation 

of the initial 24 MeV deuteron beam energy along the stacked foils was calculated using a computer 

program, SRIM-2003 software [17]. The average deuteron-energy on each foil was solely dependent 

on the foil position in the stack. 

Taking into account some of the target parameters such as density, thickness and the incident 

bombarding particles, the cross-sections, σ (E), of the assessed radionuclide were computed using the 

well-known activation formula [10, 14]. 

Similarly, we adopted decay data of the investigated reaction products from the ENSDF library [18] 

retrieved via the interface of Live Chart of nuclides [19]. The Q-values and threshold energies were 

calculated based on the AME mass evaluation [20], extracted through the Q-tool system [21] and they 

are as well presented in the Table 1. 

 

Table 1. Decay data of the assessed 
48

V. 

Nuclide Half-life Decay 

mode 

(%) 

Eγ (keV) Iγ (%) Contributing 

reactions 

Q-Value 

(MeV) 

Threshold 

(MeV) 

48
V 15.9735 d ε+β

+
:100 944.130  7.870 7 

47
Ti(d,n)

48
V 4.6 0.0 

      983.525 99.98  4 
48

Ti(d,2n)
48

V -7.0 7.3 

      1312.106 98.2  3 
49

Ti(d,3n)
48

V -15.2 15.8 

 

The major sources of uncertainties in our experiment were considered during the cross-section 

calculation and are summarized in Table 2. An overall uncertainty in present cross-sections in the 

range of 0.01 - 22.81% was obtained by quadratic summing of the individual uncertainties listed in the 

Table 2. 

 

 

3. Results and discussion 
The production cross-sections of the 

48
V radionuclide are tabulated in Table 1 while its excitation 

function is plotted in Fig. 1 together with earlier reported experimental measurements obtained from 

the EXFOR library [22] and the evaluated data in the TENDL-2014 library [23] which provides the 

output of the TALYS code [24]. In some cases, isotopic cross-sections reported in some earlier 

measurements [25-27] were normalized by multiplying with their natural isotopic abundance for 

comparison with our elemental cross-sections on the Figure. Similarly, the reported work in [28] was 

normalized based on the recommendation of the authors in their latter publication [29]. 

3.1. Production of independent 
48

V 

In addition to 
48

V, there is also 
48

Sc which was simultaneously produced from the deuteron irradiated 

Ti foils. Concurrently, both 
48

V (T1/2 = 15.9735 d) and the 
48

Sc (T1/2 =43.67 h,) decays to the same 

Table 2: Evaluated uncertainties on cross-sections calculations. 

Nuclide Uncertainties (%) 

-ray intensity 

(ΔIγ/ Iγ) 

beam 

intensity 

detector 

efficiency 

thickness 

of target 
-ray counting 

statistics 

total 

uncertainty 
48

V 0.040 5 4 2 0.3 - 5.9 0.01 - 22.81 
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stable 
48

Ti nuclide, and thus have some shared gamma lines as indicated in Table 2. There are three 

possible ways to assess independent 
48

V production cross-sections. First, it is possible to use any of the 

interfering gamma line of 
48

Sc with 
48

V for the measurement of cross-sections of the 
48

V but a 

computational technique is necessary in order to latter isolate the independent 
48

V contributions in the 

calculated cross-sections. This is usually technical and was thus avoided. The second possibility is to 

use the independent gamma line of the 
48

V (Eγ =944.130 keV), although it has a relatively low 

intensity (Iγ = 7.870 %). In the third method, since 
48

V has longer half-life compared to 
48

Sc, a long 

cooling period is usually allowed before the measurement of 
48

V, sufficient enough until the 

interfering 
48

Sc radionuclide completely decay. Thus, a cooling period of at least 10 half-lives of 
48

Sc 

(T1/2 =43.67 h) is usually needed for it to completely decay, that is about 450 hours from end of 

bombardment of the foil. This last procedure was followed in the present study since our 

measurements were made 9 to 10 days from the end of irradiation. 

The major nuclear reactions contributing to the formation of 
48

V are listed in Table 1. There are 

several experimental studies for comparison. Figure 1 compared the present studies with some of the 

literature experimental data [25-34] and also with IAEA recommended data. The Figure also 

compared our results with the extracted data of TENDL-2014 library, which was calculated based on 

TALYS code. Our data agree with the recommended data of IAEA but not with some few of the 

experimental literature data. On the other hand, the TENDL-2014 evaluated cross-sections have 

overestimated the present measurement. 

 

Table 3: Measured cross-sections for 
nat

Ti(d,x)
48

V 

Energy (MeV) Cross-section (mb) 

23.8 ± 0.5 224.8 ± 15.2 

22.3 ± 0.5 261.6 ± 17.6 

20.4 ± 0.5 308.0 ± 20.7 

18.6 ± 0.5 336.4 ± 22.6 

16.8 ± 0.6 339.0 ± 22.8 

12.8 ± 0.6 271.1 ± 18.2 

6.3 ± 0.8 21.6 ± 1.5 

4.6 ± 0.9 16.7 ± 1.1 

2.50 ± 1.50 0.80 ± 0.01 
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Figure 1. Excitation function of 
nat

Ti(d,x)
48

V reaction. 

 

 

4. Conclusion 

This work reports new experimental cross-sections for the 
nat

Ti(d,x)
48

V reaction in the energy region 

of 2.5 – 23.8 MeV. The measured excitation function was compared with the available experimental 

literature data and with the theoretical data extracted from the TENDL-2014 library. The new cross-

sections confirm the previous available data in the EXFOR database with some additional insight. A 

large discrepancy was found between the present experiment cross-sections and the theoretical data of 

the TENDL-2014 library, which was based on Talys code. Present result could play an important role 

for improvements of prediction ability of the TALYS code. 
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