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Abstract. We propose a dynamical model describing interactions between DNA and a specific
binding protein involving long-range transmission of biological information. The model couples
the hydrogen bonds between the one connecting DNA and protein side chain and the one
connecting DNA base pairs since they account for site specificity of the binding. We adopt
Morse potentials with coupling terms to construct model of coupled hydrogen bonds. We show
that the model gives rise to a breather soliton formation, corresponding to the DNA bubbles,
which propagates through DNA chain as the carrier of genetic information. We investigate
various kinds of possible coupling dynamics and suggest the model realism in depicting the
renaturation or hybridization processes.

1. Introduction

Lossless communication between DNA-binding proteins is the basis of life because it facilitates
the gene regulation, transcription and replication of DNA. It has been proposed [1–4] that a
protein induces propagating DNA deformations that play role as the carrier for lossless biological
communication in DNA chain [5]. Induced conformation in DNA is referred as allosteric effect
in DNA. Nonlinearity is necessary since any harmonic wave could not possess a coherent wave in
dispersive medium and highly dissipative environment. Thus, the propagating conformation is
nicely depicted by a solitonic wave. In this paper, we aim to investigate the dynamics of solitonic
wave corresponding to the propagating local conformational distortion in DNA that acts as the
information carrier induced by the binding of protein in specific DNA sites. A discussion in
biological terms will be conducted to give the mathematical solution a meaning. The relevant
preprint is also available in [6].

The notable study of nonlinear localized soliton that propagates through DNA was conducted
by Peyrard and Bishop (PB) [7], with their notable breather excitation referred as DNA bubble,
which has experimentally been measured in [8]. The dynamics and thermal effects of PB breather
are studied in [9,10], while the effect of viscosity and external forces are investigated in [11]. The
PB model has been modified to include the protein interaction, such as the statistical model
given in [12] and TFAM (Transcription Factor A, Mitochondrial)-DNA interaction model [13]
that depicts the allosteric interactions by proteins. However, the effect of the chemical bonds
between protein and DNA to an analytical breather is not yet investigated.
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Figure 1. Protein-DNA H-bonding. We pick the example case glutamine chain binding to
Adenine (A)-Thymine (T) base pair. The H-bonds are in box (x) and in oval (y).

The notable property of DNA-protein interaction is that the protein can bind to a specific
region in DNA, depending on its certain DNA sequence or base-pair type. Origin of the
specificity in DNA recognition by protein, at chemical signatures, is carried by the base pairs
and the DNA shapes [14–16]. The chemical bonds involved are electrostatic, van der Waals’s
and hydrogen bond (H-bond); but the latter is the most significant because it possesses the
highest transition free energy the most specific binding and the nonspecific case [17]. Thus, the
H-bond is responsible for specific DNA-protein interaction.

In this paper, we will derive the solution to our DNA-protein model [18] by using multiple
scale perturbation method and later investigate its dynamics. The model Hamiltonian is

H =
∑

n

{

p2yn
2m

+D(z)(e
−αyn − 1)2 +

k

2
(yn − yn−1)2 +

p2xm
2M

+ E(e−βxm − 1)2 +
χ

2
xamy

b
nfmn

}

.

(1)
Here pyn and yn are momentum and position of the stretching mode of a base pair, respectively;
while D is the depth of the Morse potential (second term) of this mode. The DNA-protein
stretching xm is controlled under a Morse potential by depth E and is interacting with DNA
at site-m. The first three terms are DNA parts consisting of Morse potential for the base pair
(the oval dots in figure 1) and the harmonic stacking interaction; the next two terms are protein
parts, which also consist of a Morse potential for H-bonds connecting DNA and protein side chain
(the rectangle dots in figure 1). The last term is interaction term with coupling constant χ; it
contains Gaussian decay factor fmn with σ2 proportional to variance:

fmn = exp[−σ2(m− n)2]. (2)

The dynamics of the DNA-protein interaction relies heavily on the values of a and b in the last
term of (1). One can check the implication via perturbation method by implying a = b = 1. It
will be seen that the interaction term pops up in the zeroth-order equations, and it is undesirable
for solving perturbations [18]. By considering the biological facts that the protein triggers a local
opening in DNA, even when all base pairs are still closed (yn = 0 initially), it is required that
the interaction force in the equation of motion for yn not contain the amplitude yn; otherwise,
a closed DNA segment will forever be unopened even though the protein is interacting nearby.
Here we take a = 2 and b = 1. The structural stability analysis of this Hamiltonian model is
investigated in [19].



3

1234567890

Conference on Theoretical Physics and Nonlinear Phenomena 2016 IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 856 (2017) 012005 doi :10.1088/1742-6596/856/1/012005

2. Nonlinear excitations in the DNA-protein interaction

2.1. The multiscale expansion method

To examine how the protein induces a local base-pair conformation (i.e., the opening), we must
obtain the analytical form of the nonlinear excitation. A well-known perturbative method has
been developed in [20], which is actually based on the multiscale expansion technique. The time
t is expanded to t0, t1, . . . where tn = εnt [21] and ε is a small parameter. By using multiple
scales method, we treat fastly and slowly varying time and spatial scales separately so that we
obtain envelope amplitudes in different scales. A naive perturbation cannot, in general, achieve
such solutions.

According to original PB approach [22], it is assumed that the oscillations of bases be large
enough to be anharmonic but still insufficient to break the H-bond since the Morse plateau is
not yet reached. The shifts Yn ≡ αyn and Xm ≡ βxm oscillate around the bottom of symmetric
potential; hence the transformations Yn = εφn and Xm = εψm can be safely implemented to
scale the equations of motion. Here we use the continuum approximation, assuming a long
DNA chain with lattice space a → 0, implying na → z, m/a → ρ, ka → K, D(z)/a → D,
fml → f(z) = exp[−σ2(z − z0)2] and χ/a→ X . The continuum approximation brings us to the
equations of motion for (1),

φtt − Sφzz + V(z)φ = V(z)

(

3

2
εφ2 − 7

6
ε2φ3 +O(ε3)

)

− µ

2
εψ2f(z), (3)

ψtt +Wψ = W

(

3

2
εψ2 − 7

6
ε2ψ3 +O(ε3)

)

− ηεψ

∫

φf(z)dz, (4)

where the continuum parameters are

V(z) =
2α2D
ρ

, W =
2β2E

M
, S =

K

ρ
, µ =

Xα
ρβ2

, η =
X
Mα

. (5)

For simplicity hereafter, we write z ≡ z0, Z ≡ z1, t ≡ t0, T ≡ t1, and τ ≡ t2. The multiscale
expansion yields the time or spatial derivative for each order of εn so that we can solve the
equations recursively. It should be borne in mind that φ = φ(z, Z, t, T, τ) and ψ = ψ(t, T, τ) [18].
This method breaks down the nonlinear problem into several nonhomogenous linear ordinary
differential equations up to O(ε2) in φ and ψ; the solutions are [18]

φ(0) = A1(Z, T, τ)e
iθ + c.c., (6)

ψ(0) = 2(τ)eiϕ + c.c., (7)

φ(1) = 3|A1|2 −
µf(z)

2σV(z)
|A2|2 −

1

2
A2

1e
2iθ +

µf(z)

12σV(z)
A2

2e
2iϕ + c.c.,

ψ(1) = 3|A2|2 −
1

2
A2

2e
2iϕ +

η
√
π

σ

[

A2

∫

A1dZ

ω2 + 2ω
√
W

ei(θ̃+ϕ)

+
A∗2

∫

A1dZ

ω2 − 2ω
√
W

ei(θ̃−ϕ)
]

e−q
2/4σ2

+ c.c., (8)

where θ = qz − ωt, θ̃ = qz0 − ωt and the phase ϕ =
√
Wt. From here we get the dispersion

relation,
ω2 = V(z) + Sq2. (9)

Notice that ∂A2/∂T = 0, so A2 has no dependence of T . Finally, the slow varying envelopes
A1 and A2 are determined from the coupled nonlinear Schrödinger-like equations obtained from
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zeroing the secular terms (exp(±iθ) and exp(±iϕ)) in O(ε2),

i
∂A1

∂τ
+ P1

∂2A1

∂ξ2
+Q1|A1|2A1 = 3µf |A2|2A1, (10)

i
∂A2

∂τ
+ Q2|A1|2A2 = ηγ

∫

|A1|2A2 dZ, (11)

where

γ =

[

3 +
2η
√
π

ω2 − 4W
e−q

2/4σ2

] √
π

σ
, Q1 = 4V(z),

Q2 =

[

4W +
5µη

√

π/2

12σ2V(z)

]

, P1 =
S − V 2

g

2ω
, (12)

and ξ = Z − VgT is a right-moving coordinate having group velocity Vg = Sq/ω. The integral
of |A1|2 with respect to Z over entire space is a finite function of time because we assume a
localized solitonic wave.

2.2. Nonlinear excitations

The bright soliton solutions of coupled NLS have been fairly investigated, such as in [23]. We
use the Hirota bilinear method [24] to solve (10) and (11) with the transformations

A1 ≡
G(ξ, τ)

F (ξ, τ)
and A2 ≡

H(ξ, τ)

F (ξ, τ)

∣

∣

∣

∣

ξ=ξ0

(13)

where F ∈ R and G,H ∈ C. Here we apply a technique that assumes spatial dependency of A2

in the first place, and discard it by inserting a constant ξ = ξ0 after the solution is found. By
inserting (13) into (10) and (11), we get the bilinear forms

(

iDτ + P1D
2
ξ

)

G · F = 0,

Q1|G|2 − µγf |H|2 = P1D
2
ξF · F, (14)

iDτH · F = 0,

Q2|H|2 = ηγ|G|2. (15)

From (15) we can relate A1 and A2 by |H|2 = ηγ|G|2/Q2. The problem of finding one-soliton
solution with a common phase is equivalent to solving the NLS in the form of

i
∂A1

∂τ
+ P1

∂2A1

∂ξ2
+Q′(z)|A1|2A1 = 0, (16)

where

Q′(z) = Q1 −
3µηγ

Q2
f(z) (17)

is obtained from (15). The solution for bright soliton, PQ′ > 0, is [20]

A1(ξ, τ) = A sech

[

A

(

Q′

2P1

)1/2 (

ξ − veτ

P1

)

]

× exp

[

i

(

ve
2P1

)(

ξ − vcτ

P1

)]

, (18)



5

1234567890

Conference on Theoretical Physics and Nonlinear Phenomena 2016 IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 856 (2017) 012005 doi :10.1088/1742-6596/856/1/012005

where A is the amplitude,

A(z) =

(

v2e − 2vevc
2P1Q′(z)

)1/2

, (19)

with condition v2e − 2vevc > 0. Both vc and ve are carrier and envelope wave velocities,
respectively, where vc = gve for positive g. By taking a common phase, we get that the expression
for A2 just differs by the amplitude according to (15),

A2(τ) =

(

ηγ

Q2

)1/2

A1(ξ, τ)|ξ=ξ0,z=z0 . (20)

To obtain the solution, we first calculate the integral term in (8) by changing the domain Z
to ξ,

∫

∞

−∞

A1 dZ = CA exp

[

iv2e
2P 2

1

(1− g)τ
]

, (21)

where

C =
2πP1

ve
√
1− 2g

sech

(

π

2
√
1− 2g

)

. (22)

Inserting (18) and (20) into (6)–(8) and setting ξ0 and z0 to zero, we get

Y (z, t) = ε2A sechΘ cos(N+t) + ε2A2 sech2Θ

×{3− cos 2(Qz −Mt)− Λ(z)

× [1− cos 2((Q− q)z −Mt)]}+O(ε3), (23)

X(t) = ε2A

(

ηγ

Q2

)1/2

sechΘ0 cos(N+t) + ε2A2

(

ηγ

Q2

)

× sech2Θ0 [3− cos 2(N+t)] + ε2
η
√
π

σ
e−q

2/4σ2

× 2CA

(

ηγ

Q2

)1/2

sechΘ0[ω
−1
+ cos(N+ + ω)t

+ ω−1− cos(N− + ω)t] +O(ε3), (24)

where

Θ(z, t) = ε
ve
√
1− 2g

2P1

(

qz − (Vg + ε
ve
P1

)t

)

, (25)

Θ0(t) = ε2
ve
√
1− 2g

2P1
t, (26)

Q = q + ε
ve
2P1

, (27)

M = ω + ε
ve
2P1

[

Vg + ε

(

gve
P1

)]

, (28)

N± = ±
√
W + ε2g

v2e
2P 2

1

, (29)

Λ(z) =
µηγ

V(z)Q2
e−σ

2z2 , (30)

ω± = ω2 ± 2ω
√
W. (31)
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Figure 2. Relation between amplitude A and the coupling constant.

One can see from (23) that if the coupling χ = 0, then Λ(z) = 0. Hence y(z, t) will be
identical to the Peyrard-Bishop breather solution [22], while x(t) = 0 as if there is no interacting
protein.

We take and adjust the PB parameters from [25],

α = 1.2
√
2 Å−1, D = 0.07 eV, k = 12N/m,

q = 0.18 Å−1, g = 0.47, ve = 1888m/s. (32)

Here we take constant D for simplicity. The length between two base pairs is a = 3.4 Å and the
nucleotide mass is m = 5.1×10−25 kg. Here the value of q corresponds to a wavelength covering
10 base pairs. We take E = D and β = α as the connecting hydrogen bonds between adenine and
glutamine in the base pairs; they are the same as those connecting A-T. We interpret the decay
factor σ/

√
2 as the inverse width of the protein. An α-helix protein is 12 Å in diameter [26],

hence σ = 0.117 Å
−1

. The protein effective mass M is rather free because any proteins could
have an arbitrary count of amino acid sequences. Nevertheless, in this case we take it as a
glutamic acid weight, M = 2.47 × 10−24 kg. We are left with a free parameter, the coupling
constant χ, whose value should have significance in the dynamics of the interaction.

3. Discussion and conclusions

To discuss the model relevance with biological reality, we investigate the restrictions of our
introduced coupling constant χ and its ramification with the amplitudes. The value of the
coupling is crucial for the complex interaction and should have several interpretations. To see
this, let us consider (19) by taking z = z0; we get the restriction

Q1Q2 − 3µηγ > 0, (33)

or more explicitly, recall that X = χ/a,

Q1C + (Q1D −A)X 2 −BX 3 > 0 (34)

where

A =
9
√
π

Mρβ2σ
, B =

6
√
π

Mα(ω2 − 4W )
e−q

2/4σ2

, (35)

C = 4W, D =
15

√

π/2

12Mρβ2σ2V(z)
. (36)
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Figure 3. Plot of the solutions with coupling constant χ = 0, χ = −0.904 (local maximum),
χ = 1 (approaching singularity) and χ = −500 (highly negative).

If Q1D −A > 0 then we require
σ < 0.392 Å−1, (37)

meaning the protein diameter
√
2/σ > 3.59 Å, which is obviously the case because it is barely

a base-pair length. Now we are left with B whose sign depends on ω2 − 4W . The positive and
negative case are

M > 8β2E/ω2, M < 8β2E/ω2, (38)

respectively. A positive B will produce a relation between the amplitude A and coupling χ as
in figure 2; the main property is that A → 0 for highly negative χ. In contrast, a negative B
will vertically mirror the relation, i.e., A → 0 for highly positive χ. Here our choice falls in
the positive case. We will discuss the four interesting values of χ given in figure 2: zero, local
maximum, approaching singularity and highly negative.

For χ = 0 it is shown in (23), figure 3 and figure 4 that the solution is identical to the PB
breather when the H-bonds between protein and DNA are not shifted. However, if we take χ
near zero then the DNA is open, while the protein side chain is doing a local oscillation. The
interaction induces a local base pairs opening to let the protein recognize a specific sequence of
base pairs, while previously the bases are being hindered from outside world by DNA strand.
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Figure 4. Plot of the strecth y with respect to DNA chain z and time, (top left) χ = 0, (top
right) χ = −0.904, (bottom right) χ = 1 and (bottom left) χ = −500.

Our model only contains one-dimensional bond shifts, and thus it has a radial symmetry. It
is possible that the bases twist out while being recognized. The propagating breather soliton
is interpreted as the mediator of the allosteric transmissions in DNA [2, 4] that facilitate the
long-range information transfer between two vastly separated specific DNA-binding proteins.

Our result for small χ > 0 is in agreement with the statistical model in [12] that implies
a breather excitation or amplification of an already existing breather. We should restrict χ in
the value where the amplitudes vary linearly with χ. In addition, from (23) we find that the
wavelength near the protein is reduced by q in the Λ(z) term. We predict from (24) that the
protein will sustain a small-amplitude oscillation that decays over time, by the slowly varying
envelope wave occuring over 1,000 ps. This vibration is mechanically due to the recoil from the
base-opening process.

The singular point is due to the square root in (19). We cannot interpret this as a totally
denatured or separated DNA strands because the phenomena falls outside our small amplitude
approximation. On the other hand, we have not found the significance of the local maximum
case of χ other than its relatively high-amplitude property. The local maximum occurs when
Q1D −A > 0. For Q1D ≈ A or for very small proteins, the local maximum ceases.

The case of highly negative χ is particularly interesting because, contrary to the previous
cases, it totally reduces the amplitudes. The protein can repress or close the base pairs within
its reach, which is restricted by f(z). This can describe the DNA recombination or the reverse
mechanism of denaturation. The naturally occurring base pairs closing is the renaturation
process catalyzed by proteins such as RAD1O [27], while a similar mechanism can be engineered
by DNA hybridization. The base recombination process is crucial for the polymerase chain
reaction which is widely used for DNA testing.

At last, the value of effective mass M is still unclear because it depends on the geometrical
features of each type of protein and the binding it conducts. Further investigation is needed
because the overall interaction dynamics can be extremely different as the coupling behavior is
dependent on M . It is also interesting to study the base pair zippering by protein because it
needs to regularize the thermal fluctuation that forces the bases to open again after being closed
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by the renaturation or hybridization processes.
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