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Abstract. A finite simple graph G admits an H-covering if every edge of E(G) be-
longs to a subgraph of G isomorphic to H. We said the graph G = (V,E) that admits
H-covering to be H-magic if there exists a bijection function f : V (G) ∪ E(G) →
{1, 2, . . . , |V (G)| + |E(G)|} such that for each subgraph H ′ of G isomorphic to
H, f(H ′) =

∑
v∈V ′ f(v) +

∑
e∈E′ f(e) = m(f) is constant.

Furthermore, if f(V ) = 1, 2, . . . , |V (G)| then G is called H-supermagic. In this re-
search we defined S2,2-supermagic labeling on shrub graph Š(m1,m2, . . . ,mn) and
fish-supermagic labeling on Lm ⊙ Pn for m,n ≥ 2.

1. Introduction
Gallian [2] defined a graph labeling as an assignment of integers to the vertices or edges,
or both, subject to certain condition. Magic labeling is a type of graph labeling that
the most often to be studied. In [2], magic labelings were first introduced in 1963 by
Sedláček.

We consider finite and simple graphs. The vertex and edge sets of a graph G
are denoted by V (G) and E(G), respectively. An edge-covering of G is a family of
subgraphs H1, . . . , Hk such that each edge of E(G) belongs to at least one of the
subgraphs Hi, 1 ≤ i ≤ k. If every Hi is isomorphic to a given graph H, then
G admits and H−covering. An edge total labeling on G is a bijective function
f : V (G) ∪ E(G) → 1, 2, . . . , |V (G)|+ |E(G)|, with the property that, given any edge
xy, we have f(x) + f(xy) + f(y) = k.

In 2005, Gutiérrez and Lladó [4] generalized the concept of an edge-magic total
labeling into an H-magic covering as follows. Let G = (V,E) be a finite simple graph
that admits H-covering. A bijection function f : V (G) ∪ E(G) → {1, 2, . . . , |V (G)| +
|E(G)|} is called H-magic labeling of G if for every subgraph H ′ = (V ′, E′) of G
isomorphic to H, f(H ′) =

∑
v∈V ′ f(v) +

∑
e∈E′ f(e) = m(f) is constant. The graph

G is called H-supermagic if f(V (G)) = {1, 2, . . . , |V (G)|}. In [4], it is proved that a
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complete bipartite graph Kn,n is K1,n-magic for n ≥ 1.

Selvagopal and Jeyanthi in Gallian [2] proved that for a positive integer n, the k-
polygonal snake of length n is C4-supermagic; for m ≥ 2, n = 3, or n > 4, Cn × Pm is
C4-supermagic; P2 × Pn and P3 × Pn are C4-supermagic for all n ≥ 2. Roswitha et al.
[8] proved H-magic covering on some classes of graphs. In this research we investigate
that a shrub graph Š(m1,m2, . . . ,mn) admits a double star S2,2-supermagic labeling
and a Lm ⊙ Pn admits a fish-supermagic labeling for m,n ≥ 2.

2. Main Results
2.1. k-balanced multiset
Maryati et al. [6] defined a multiset as a set that allows the same elements in it. A

multiset {ak11 , ak22 , ak33 , ..., aknn } is defined as a set of ai as many as ki for any integers
n and ki, i ∈ [1, n]. Let V = {a1, a2, a3, a4} and W = {a2, a5, a6} be the multiset,
then we have V

⊎
W = {a1, a2, a2, a3, a4, a5, a6}. In [6] was introduced a technique of

partitioning a multiset, called k−balanced multiset, as follows. Let k ∈ N and Y be a
multiset that contains positive integers. Y is said to be k−balanced if there exists k

subsets of Y , say Y1, Y2, . . . , Yk, such that for every i ∈ [i, k], |Yi| = |Y |
k ,ΣYi =

ΣY
k ∈ N ,

and
⊎k

i=1 Yi = Y , then Yi is called a balanced subset of Y .

Lemma 2.1 (Roswitha and Baskoro [7]) Let x and y be non-negative integers. Let
X = [x+ 1, x(y + 1)] with |X| = xy and Y = [x(y + 2), 2x(y + 1)− 1] where |Y | = xy.
Then, the multiset K = X ⊎ Y is xy-balanced with all its subsets are 2-sets.

2.2. (k, δ)-anti balanced multiset
Inayah [5] defined (k, δ)-anti balanced multiset as follows. Let k, δ ∈ N and X be
a set containing the elements of positive integers. A multiset X is said to be (k, δ)-
anti balanced if there exists k subsets from X, say X1, X2, . . . , Xk such that for every

i ∈ [1, k], |Xi| = |X|
k ,

⊎k
i=1Xi = X, and for i ∈ [1, k − 1],

∑
Xi+1 −

∑
Xi = δ.

Here, we give several lemmas on (k, δ)-anti balanced multiset.

Lemma 2.2 Let x, y, z and k be non-negative integers, k ≥ 2. Let R = [x, x+ ⌊k2⌋] ⊎
[x+ 1, x+ ⌊k2⌋] ⊎ [y, y + ⌊k−1

2 ⌋] ⊎ [y, y + ⌊k−1
2 ⌋ − 1] ⊎ [z, z + k − 1], then R is (k, 2)-anti

balanced.

Proof.
For every j ∈ [1, k] we define the multisets Rj = {x + ⌊ j2⌋, y + ⌊ j−1

2 ⌋, z + (j − 1)}.
It is obvious that for each j ∈ [1, k], |Rj | = 3, Rj ⊂ R, and

⊎k
j=1Rj = R. Since∑

Rj = x+ y + z + ⌊2j−1
2 ⌋+ j − 1 for every j ∈ [1, k], then

∑
Rj+1 −

∑
Rj = 2, R is

(k, 2)-anti balanced.

2

Lemma 2.3 Let x and k be non-negative integers, k ≥ 2. Let Y = [x, x + k] ⊎ [x +
1, x+ k − 1], then Y is (k, 2)-anti balanced.

Proof.
For every j ∈ [1, k] we define the mutisets Yj = {x + j − 1, x + j}. Now we have for

every j ∈ [1, k], |Yj | = 2, Yj ⊂ Y and
⊎k

j=1 Yj = Y . Since
∑

Yj = 2(x+ j)− 1 for every

j ∈ [1, k], then
∑

Yj+1 −
∑

Yj = 2, Y is (k, 2)-anti balanced.

2
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2.3. S2,2-supermagic Labeling on Shrubs Graphs.
Maryati [6] defined a shrub graph Š(m1,m2, . . . ,mn) as a graph that is obtained from
a star graph K1,n for n ≥ 2 with central vertex c, and adding some vertices and edges
so that for every i ∈ [1, n], vi is related with the new mi ≥ 1 vertices. According to
Grossman [3], a double star S(n,m) is a graph consisting of the union of two stars K1,n

and K1,m together with a line joining their centers.

In Figure 1 and Figure 2 we show examples of a shrub graph Š(m1,m2, . . . ,mn) and
a double star S2,2.
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Figure 1. A shrub graph
Š(m1,m2, . . . ,mn).
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Figure 2. A double star S2,2.

Theorem 2.4 Any shrub graph Š(m1,m2, . . . ,mn) is S2,2-supermagic for any integer
n and mi ≥ 2, i ∈ [1, n].

Proof.
Let G be a shrub graph Š(m1,m2, . . . ,mn) for any integer n and m1,m2, . . . ,mn ≥ 2.
Then |V (G)| = m1 + m2 + . . . + mn + n + 1 and |E(G)| = m1 + m2 + . . . + mn + n.
Let A = [1, 2(n + m1 + m2 + . . . + mn) + 1]. Partition A into 3 sets, A = K ∪ X,
with X = L ⊎ M where K = {1}, L = [2, n + 1 + m1 + . . . + mn],M = [n + 2 +
m1 + . . . + mn, 2n + 1 + 2(m1 + . . . + mn)]. Let f be a total labeling of G and s(f)
be the supermagic sum in every subgraph H of G that is isomorphic to double star S2,2.

Now we define a total labeling f on G as follows. Label the center vertex with
1. Apply Lemma 2.1 to partition X into {Xi, x ≤ i ≤ y} with x = 1 and
y = n+m1+m2+ . . .+mn. We obtain that X is n+m1+m2+ . . .+mn-balanced with
all its subsets are 2-sets and

∑
Xi = 2(n+m1 +m2 + . . .+mn) + 3. Use the smaller

labels in every Xi for the vertices. Thus, the sum of labels of each double star S2,2 is
s(f) = 10(n+m1 +m2 + . . .+mn) + 16. Hence, the shrubs graph is S2,2-supermagic.

2

The example of S2,2-supermagic labeling on Š(3, 2, 4, 2) is shown in Figure 3.
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Figure 3. S2,2-supermagic
labeling on Š(3, 2, 4, 2).

2.4. A Fish-Supermagic Labeling on Lm ⊙ Pn.
The corona G1 ⊙ G2 of two graphs G1 and G2 (where Gi has pi points and qi lines)
is defined as the graph G obtained by taking one copy of G1 and pi copies of G2, and
then joining by a line i ’th point of G1 to every point in the i ’th copy G2.
Lm ⊙ Pn graph is obtained by taking one copy of Lm and 2m copies of Pn and then
joining by a line the i ’th vertex of Lm to every vertex in the i ’th copy of Pn.
Figure 4 is an example of Lm ⊙ Pn graph.
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Figure 4. A Lm ⊙ Pn

graph.

Brandstadt [1] defined a fish graph as a graph on 6 vertices illustrated below.
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Figure 5. A fish graph.

Theorem 2.5 Any Lm ⊙ Pn graph for m,n ≥ 2 is a fish-supermagic.

Proof.
Let G be a Lm ⊙ Pn graph for any integer m,n ≥ 2. Then |V (G)| = 2m(n + 1) and
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|E(G)| = m(4n+ 1)− 2. Let A = [1, 2m(3n− 1) + 5(m− 1) + 3]. We define a bijective
function f : V (G) ∪ E(G) → {1, 2, . . . , 2m(3n − 1) + 5m − 2}. Partition A into 4
sets, A = V ⊎W ⊎X ⊎ Y , where V = [1, 2mn],W = [m(2n+ 3),m(4n+ 3) − 1], X =
[m(4n+3),m(4n+3)+n−2]

⊎
[m(4n+3)+n,m(4n+3)+(2n−2)]

⊎
. . .

⊎
[m(4n+3)+

(2m−1)n,m(4n+3)+2mn−2], and Y = [2mn+1, 2m(n+1)+(m−1)]
⊎
{m(4n+3)+

(n−1),m(4n+3)+(n−1)+n,m(4n+3)+(n−1)+2n, . . . ,m(4n+3)+(n−1)+2n(m−1)}.

Let f be a total labeling of G and s(f) be the supermagic sum in every subgraph
H of G that is isomorphic to fish graph. It is easier if a fish graph is divided into 2
subgraphs, F2 − {v0} (a fan graph F2 without a central vertex) and C4.

There are two steps to label the Lm ⊙ Pn graph. The first step is to prove that
2m(Fn−{v0}) is a (F2−{v0})-supermagic using the elements of multisets V ⊎W ⊎X,
and the second one is to prove that Lm is C4-supermagic using the element of set Y .

Step 1. The first step is to prove that 2m(Fn − {v0}) is (F2 − {v0})-supermagic using
the elements of multisets V ⊎W ⊎X. We consider two cases on this proof.

Case 1. n = 2. For n = 2, the number of (F2 − {v0}) subgraphs on graph G is 2m as
shown in Figure 6.

u1 v1f1

e1 g1

u2 v2f2

e2 g2

ui vifi

ei gi
Figure 6. F2 − {v0}
subgraph on Lm ⊙ P2.

Now, we prove that 2m(Fn − {v0}) on Lm ⊙ P2 is (F2 − {v0})-supermagic
using the element of multisets V ⊎ W ⊎ X. Let H be 2m(Fn − {v0}). We have
V (H) = {ui, vi : 1 ≤ i ≤ 2m} and E(H) = {ei∪fi∪gi : 1 ≤ i ≤ 2m}. Let f be the
total labeling of H and s(f) be the supermagic sum in every F2 − {v0} subgraph
on 2m(Fn − {v0}). Then for every 1 ≤ i ≤ 2m we define

f(x) =


i, if x = vi,
2m+ i, if x = ui,
m(4n+ 3) + 1− 2i, if x = ei,
m(4n+ 3) + 2(i− 1), if x = fi,
m(4n+ 3)− 2i, if x = gi.

For every 1 ≤ i ≤ 2m, let (F2 − {v0})i be the subgraph of Lm ⊙ P2 with
V ((F2 − {v0})i) = {ui, vi} and E((F2 − {v0})i) = {ei, fi, gi}. It can be checked
that for every 1 ≤ i ≤ 2m, we have

∑
f((F2 − {v0})i) = 3m(4n + 3) + 2m − 1.

Hence 2m(F2 − {v0}) is (F2 − {v0})-supermagic.

Case 2. n > 2. Now we prove that 2m(Fn−{v0}) is (F2−{v0})-supermagic using the
elements of multisets V ⊎ W ⊎ X. Let f be the total labeling of 2m(Fn − {v0})
and s(f) be the supermagic sum in every F2 − {v0} of 2m(Fn − {v0}). The total
labeling of (Fn − {v0})i for every 1 ≤ i ≤ 2m will be executed within two steps.
Firstly, we label the subgraph of (Fn − {v0})i called P i

n, then after that we label
the edges other than P i

n that are incident with the vertices of P i
n.
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Lemma 2.2 is applied for every i of P i
n where 1 ≤ i ≤ 2m with xi = 1 + (i −

1)⌈n2 ⌉, yi = 2m⌈n2 ⌉+ (i− 1)⌊n2 ⌋+1, z = m(4n+3)+ n(i− 1), and k = n− 1 using
the element of V ⊎X. We have that V ⊎X in every Pi is (k, 2)-anti balanced.

Next, by applying Lemma 2.3 we label the edges other than P i
n that are incident

with the vertices of P i
n using the elements of W with x = m(4n + 3) − ni and

k = n, starting from the edge that incident with a vertex vn until the edge
that incident with a vertex v1 in every P i

n. Now we have that W for every
i ∈ [1, 2m] is (k, 2)-anti balanced. This implies that multiset V ⊎ W ⊎ X is
2km-balanced. Hence 2m(Fn − {v0}) of Lm ⊙ Pn is (F2 − {v0})-supermagic with∑

f((F2 − {v0})i) = m(12n + 2⌈n2 ⌉ + 2) + 7(m − 1) + 6. We conclude that for
n ≥ 2, 2m(Fn − {v0}) is (F2 − {v0})-supermagic.

Step 2. The next step is to prove that Lm is C4-supermagic using the element of
set Y . Let Lm

∼= Pm × P2 be a graph with V (Lm) = {ui, vi : 1 ≤ i ≤ m} and
E(Lm) = {uivi : 1 ≤ i ≤ m} ∪ {uiui+1, vivi+1 : 1 ≤ i ≤ m − 1}. Let f be a total
labeling of V (Lm) ∪ E(Lm) using the element of set Y . The total labeling of Lm is
defined as follows.

(i) Label each vertex of Lm as follows.

f(ui) = m(2n+ 1)− (i− 1), for i ∈ [1,m].

f(vi) =

{
m(2n+ 1) + i+1

2 , for i odd, i ∈ [1,m],
m(2n+ 1) + ⌈m

2 ⌉+
i
2 , for i even, i ∈ [1,m].

(ii) Next, label each edge of Lm for every i ∈ [1,m− 1] as follows.

f(uiui+1) = m(4n+ 3) + ni− 1
f(vivi+1) = m(2n+ 2) + i

(iii) For every i ∈ [1,m], label each edge of Lm as follows.
For m odd.

f(uivi) =

{
m(4n+ 3) + n(m+1

2 ) + n(m− 1)− n( i−1
2 )− 1, for i odd,

m(4n+ 3) +mn+ n(m− 1)− n( i−2
2 )− 1, for i even.

For m even.

f(uivi) =

{
m(4n+ 3) +mn+ n(m− 1)− n( i−1

2 )− 1, for i odd,
m(4n+ 3) + n(m2 ) + n(m− 1)− n( i−2

2 )− 1, for i even.

For every 1 ≤ i ≤ m − 1, let Ci
4 be as subgraph of Lm ⊙ Pn with V (Ci

4) =
{ui, ui+1, vi, vi+1} and E(Ci

4) = {uiui+1, vivi+1, uivi, ui+1vi+1}. It can be checked that
for every 1 ≤ i ≤ m−1,

∑
f(Ci

4) = m(22n+14)+n(2+⌈m+1
2 ⌉)+⌈m+1

2 ⌉+(m−1)(3n+1).
Hence Lm is C4-supermagic.

It has been proved that 2m(Fn − {v0}) is (F2 − {v0})-supermagic and Lm is
C4-supermagic. Hence, Lm ⊙ Pn is a fish-supermagic with its supermagic sum is
s(f) = m[(12n+2+2⌈n2 ⌉)+ (22n+14)]+n(2+ ⌈m+1

2 ⌉)+ ⌈m+1
2 ⌉+(m− 1)(3n+8)+6.

2

Figure 7 illustrates a fish-supermagic labeling on L3 ⊙ P4.
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Figure 7. A fish-
supermagic labeling on
L3 ⊙ P4.
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