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ABSTRACT. In this paper we focus on the abstract Cauchy problems of the time-

dependent evolution equation  ̇   ( ) ( ). If the operator  ( )    is time-

independent, we can use the   -semigroups theory to solve the abstract Cauchy problem. 

In this case   is a infinitesimal generator of the   -semigroups. However, if  ( ) is time-

dependent, we can not apply directly the   -semigroups theory to solve the problem. In 

this situation we can use the quasi semigroups theory as development of the two 

parameters semigroups. This semigroups is induced by bounded evolution operators 

 (   ) that satisfy some assumptions. In this paper we determine the fundamental 

properties of the quasi semigroups included its generator related to the time-dependent 

evolution equation.  

 

1. Introduction 

Let consider the time-independent abstract Cauchy problems  

 ̇( )    ( ),                                                                     (1) 

on a Banach space   and   is a densely defined operator on  ( )   . Fattorini [6] gave necessary and 

sufficient conditions in order to (1) be well-posed in    . Especially, if   is the generator of    -semigroup 

of bounded linear operators on  , then the semigroups theory is a powerful tool for solving (1), (see [3], [5], 

[15], and [17]). We can get the comprehensively properties of   and its application therein.  

Next, we consider the time-dependent abstract Cauchy problems [7] 

 ̇( )   ( ) ( )   ( )                                                             (2) 

and the associated homogeneous equation  

 ̇( )   ( ) ( )                                                                         (3) 

Here   is an unknown function from the real interval ,   - into a Banach space  ,   is a given function from 

,   - into  , and  ( ) is a given, closed, linear operator in   with domain  ( ( ))   , independent of   

and dense in  . The higher order of parabolic type of (2) also was investigated by Obrecht [14]. 

The solution of (2) formally given by  

 ( )   (   )   ∫  (   )
 

 

 ( )             ( )                                    ( ) 

where  (   ) is a linear operator on   depending on   and  , with    , [9]. The main problem is to find 

some sufficient conditions for the existence of  (   ).  

If  ( )    is independent of  , then  (   ) is given formally by  (   )   (   ) . In this case   is 

an infinitesimal generator of   -semigroup of bounded linear operators on  , and equation (2) and (3) admit 

a unique solution respectively. These suggest to generalize the results as  ( ) depend on  . It is a natural to 

take over some assumption on the infinitesimal generator   for the  ( ) for each  . However, Ladas and 

Lashmikantham [10], Masuda [12] and Fattorini [6] gave the assumptions for  ( ) in order to each equation 

(2) and (3) admits a unique solution.  

 The family of operators  (   ) is also called evolution operator, propagator, solution operator or 

Green’s function associated to (2) or (3). Let  ( ) be the set of all bounded linear operators from   into  . 

Then each operator  (   ) belong to  ( ) for all      , and satisfies the following conditions: 

(a)  (   )   , identity of  ( ), 

(b)  (   ) (   )   (   ),         , 

(c)  (    ) is strongly continuous, 
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(d) The operator 
  (   )

  
  exists, and continuous for each    . 

For detail properties of the evolution operator see [2], [3], [5], [6], [11] and [15].  

The appearance of this the family  (   ) that urges the new semigroups theory of two parameters, is 

called quasi-semigroups. Leiva and Barcenas [11] have introduced the quasi-semigroups  (   )      . 

They prove several properties of  (   ) and its generator. They also give the certain conditions in order to 

(2) has a unique solution. Furthermore, they  can construct the necessary and sufficient conditions for exact 

and approximate controllability for the non-autonomous control systems. The sequel works about dual quasi-

semigroups and controllability also was done by Barcenas et.al [1].  

Megan and Cuc [13] study some stability concepts for linear systems the evolution which can be 

described by   -quasi-semigroup. The results obtained may be regarded as generalizations of well known 

results of Datko, Pazy, Littman and Neerven about exponential stability of   -semigroups. Moreover, the  -

quasi-semigroups as generalization of  -semigroups also can be constructed [8]. Therein,  some examples 

are given and the properties of  -quasi-semigroups are verified. Also some applications of  -quasi-

semigroups in abstract evolution equations is considered.  

In this paper we shall investigate the properties of   -quasi-semigroups which have not yet discussed 

in Leiva and Bercenas [11] inline to the properties of  -semigroups. Especially, we consider the Hille-

Yosida theorem version in   -quasi-semigroups. The finally, we shall consider some applications of   -

quasi-semigroups for solving the evolution equations that are described by PDE’s. 

 

 

2. Quasi-semigroups 

The theory of quasi-semigroups of  bounded linear operators, as a generalization of semigroups of operators, 

was introduced by Leiva and Barcenas [11].  

 

Definition 2.1. Let   be a Banach space. A two-parameter commutative family * (   )+       ( ) is 

called a strongly continuous quasi-semigroup (or   -quasi-semigroup) of operators if for every         

and    :  

(q1)   (   )   , the identity operator on  , 

(q2)   (     )   (     ) (   ), 

(q3)        ‖ (   )   ‖   ,  

(q4)  there exists a continuous increasing mapping   ,   )  ,   )  such that  
‖ (   )‖   (   ). 

 

 For a   -quasi-semigroup * (   )+      on a Banach space  , let   be the set of all     for which 

the following limits exist  

     
    

 (   )   

 
          

    

 (   )   

 
     

    

 (     )   

 
       

For     we define an operator  ( ) on   as  

 ( )     
    

 (   )   

 
  

The family * ( )+    is called infinitesimal generator of the   -quasi-semigroups * (   )+     .  

Next, we say generator in short instead of infinitesimal generator. Throughout this paper we denote 

 ( ) and  (   ) as semigroups * ( )+    and  quasi-semigroups * (   )+     , respectively. We also denote 

  as domain of  ( ),    . We give some useful examples of   -quasi-semigroups that are summarized 

from [8] and [11]. 

 

Example 2.2 If   ( ) is a   -semigroup on a Banach space   with its generator  , then  (   ), with 

 (   )   ( ),        , 

defines a   -quasi-semigroup on   with its generator  ( )       , and    ( ). 

 

Example 2.3  Let   be a Banach space of all bounded uniformly continuous functions on ,   ) with the 

supremum-norm. The family of operators  (   ) in  ( ) defined by  

( (   ) )( )   (        ),          
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is a   -quasi-semigroup on   with generator  ( )          , where   *         +. 
 We can verify easily the conditions (q1) – (q4) of the Definition 2.1. For     fixed, and     we 

have  

(
 (   )   

 
) ( )  

 (        )   ( )

 
 

 ( )   ( )

 
      

where  ( )   (        ), for some    . Consequently,   

( ( ) )( )     
    

(
 (   )   

 
) ( )    ( )      ( )  

So,  (   ) is a   -quasi-semigroup on   with its generator  ( )       and   *         +. Here    
denotes the derivative of   respect to  .  

 

Example 2.4 If   ( ) be a   -semigroup on a Banach space   with its generator  , then  (   ) with 

 (   )    (   )  ( ),        , 

is a   -quasi-semigroup on   with its generator  ( )    ( )    , and    ( ).  

In fact, for     and  ( ) is a   -semigroup we have 

                   ( )     
    

 (   )   

 
    

    
(
  (   )  ( )   

 
)  

                                                                     
 

  
, ( )- ( )  (   )  ( )|

   
  

                                                                       ( ) ( )|       ( )   

 

Example 2.5 Let  ( ) be a   -semigroup on a Banach space   with its generator  . For      ,   

 (   )   ( (   )   ( )),    

where  ( )  ∫  ( )
 

 
    and    ,   ) with  ( )   . The  (   ) is a   -quasi- semigroup on   with 

its generator  ( )   ( ) . 

For each         and     we have  

(q1)   (   )   ( ( )   ( ))   , 

(q2)   (     )   ( (     )   ( )) 

                              ( (     )   (   )   (   )   ( )) 

                              ( (     )   (   )) ( (   )   ( ))  

                              (     ) (   ), 

(q3)         ‖ (   )   ‖         ‖ ( (   )   ( ))   ‖   , since   is continuous. 

(q4)  Since   is strongly continuous on  , there exists        such that ‖ ( )‖       .  Therefore,   

‖ (   )‖  ‖ ( (   )   ( ))‖   (   ), where  (   )      ( (   )  ( )). 

Moreover,  

                   ( )     
    

 (   )   

 
    

    
(
 ( (   )   ( ))   

 
)  

                                         (   )
 

  
[ ( (   )   ( )) ]|

   
  ( )    

Thus,   (   ) is a   -quasi-semigroup on   with generator  ( )   ( )  and    ( ).  

 

3. Main Results 

In the following results we use in outline of results of [3], and some results because of reformulation from 

[1], [8], and [11].  

 

Theorem 3.1 If   (   ) is a   -quasi-semigroup on a Banach space  , then  

(a) For each    ,  (   ) is strongly continuous on ,   )   
(b) For each     and     hold  

   
    

 
 

 
∫  (   )
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Proof. (a)  For       fixed, by commutativeness and boundedness of  (   ), then for     and     we 

have  

‖ (     )   (   ) ‖  ‖ (     ) (   )   (   ) ‖ 

                                                                    ‖ (   )‖‖ (     )   ‖. 

By (q3) we conclude that  

   
    

‖ (     )   (   ) ‖     

i.e  (   ) is strongly continuous on ,   ). 

(b) Let    ,    , and     be given. By strongly continuity of  (   ) there exists     such 

that for   ,   - we have  

‖ (   )   ‖   . 

Therefore,  for   (   -  

                  ‖
 

 
∫  (   )

 

 

      ‖  ‖
 

 
∫ , (   )

 

 

   -   ‖ 

                                                                  
 

 
∫ ‖ (   )   ‖

 

 

    
 

 
∫  

 

 

      

 
Theorem 3.2 If   (   ) is a   -quasi-semigroup on a Banach spce   with its generator  ( ), then 

(a) If    ,    , and        , then  (     )    and 

 (     ) ( )   ( ) (     )   
(b) For each       

 
 

  
( (   ) )   (   ) (   )   (   ) (   )       

(c) If  ( ) is locally integrable, then for every     and     

 (   )    ∫  (   ) (   )
 

 

      

(d) If   ,   )    is a continuous, then for every   ,   ) 

   
   

 

 
∫  (   ) ( )  

   

 

  (   ) ( )  

Proof. (a) For     states that  

   
    

 (   )   

 
  ( )   

By strongly continuity of  (     ),  

 ( ) (     )     
    

 (   ) (     )   (     ) 

 
 

                                                                  (     )    
    

 (   )   

 
  (     )  ( )   

So,  (     )   , and  (     ) ( )   ( ) (     ) . 

(b)  For    , the commutativeness of  (   ) gives  
 (     )   (   ) 

 
  (   )

( (     )   ) 

 
  

If    , then for      the limit in the right hand exists. This implies the existence of limit in the left 

hand, i.e  

   
    

 
 (     )   (   ) 

 
  (   ) (   )                                                 ( ) 

For      such that      , 

      
 (     )   (   ) 

 
 

 (   )   (     ) 

  
 

                                                    
 (        ) (     )   (     ) 

  
 

                                                     (     )
 (        )   

  
 

                                                     (     )
 (        )   (      )   (      )   
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The strongly continuity of  (   ) implies  

   
    

  (        )   (      )     

Therefore,  

    
    

 (        )   

  
    

    

 (      )   

  
  (   )   

Again, the strongly continuity of  (   ) implies  

   
    

 
 (     )   (   ) 

 
  (   ) (   )                                                 ( ) 

From (5) and (6) we have  
 

  
( (   ) )   (   ) (   )   (   ) (   )   

(c) By integrating the last equation from 0 to  , we have  

 (   )    ∫  (   ) (   )    
 

 

 

(d) For    , by continuity of   and the strongly continuity of  (   ) on ,   ), then  ( )  
  (   ) ( ) is continuous in  . If we define  

 ( )  ∫  ( )
   

 

     

then 

  ( )     
   

 
 

 
∫  ( )  

   

 

    
   

 
 

 
∫  (   ) ( )  

   

 

                                       ( ) 

On the other hand, since  

  ( )   (   ) 

then 

  ( )   ( )   (   ) ( )                                                             (8) 

From (7) and (8) we have  

   
   

 
 

 
∫  (   ) ( )  

   

 

  (   ) ( )  

 

 
 In the semigroups theory, if   is an infinitesimal generator of   -semigroup with domain  , then   

is a closed operator and   is dense in  . These are is not always true for any   -quasi-semigroups. 

 We return to the   -quasi-semigroup  (   ) in Example 2.3, with the generator  ( )       and 

its domain   *         +. We can show that for every    ,  ( ) is not closed. In fact, we can 

choose a sequence (  ) in   with   ( )       ⁄ , for     and    . Obvious that  

       where    ( )     for all    . 

However,  

 ( )     

where ( ( )  )( )              and  ( )  {
           
             

. We have  ( )   . Therefore,  ( ) is 

not closed. 

 

Example 3.3  Let   be as in Example 2.3. For     given an initial value problem  
  

  
(   )   (   )

  

  
(   ) 

                                                      (   )     
This initial value problem can be rewritten as  

 ̇( )   (   ) ( ) 

                                                          ( )     
where  ( )      . By Theorem 3.2 (c), for each      the initial value problem has a solution  ( )  
 (   )   where  (   ) is a   -quasi-semigroup with generator  ( ) that satisfies  ( ) ( )      ( ) on its 

domain  

  *             ( )   +. 
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The set   is not dense in  , since  ̅  *       ( )   +     [16]. This result also concludes that for 

    the operator  ( ) is not a generator for any   -semigroup.  
 

The two examples previously state that the operator  ( ),    , can be a generator for some   -

quasi-semigroup but it must not satisfy the the necessary condition of the Hille-Yosida theorem [3]. Next,  

we define the resolvent operator of  ( ) similar to one in operator theory.  For each     we define the 

resolvent operator of  ( ) as 

    (   ( ))  (    ( ))  , 

with its resolvent set  ( ( )). 

Throughout this paper, we put   as a set of all complex numbers   such that           with 

  ⁄     , see [10]. 

 

Theorem 3.4 Let  ( ) be a closed and densely defined generator of a   -quasi-semigroup  (   ) on a 

Banach space   and resolvent  (   ( )) exists in  . If    ( ( )), then  (   ( )) (   )  

 (   ) (   ( )) for all    .  

Proof. For    ( ( )) and    , we set    (   ( )) . Since   ( )   exists, then we can write    as 

   (   ( ))   ( )  (  ( )    )      or    ( )  (  ( )    )   , 

i.e    . From Theorem 3.2 (a) for      we have  

 (   )(   ( ))  (    ( )) (   )  

By applying  (   ( )) to the both sides, we conclude that  (   ( )) (   )   (   ) (   ( ))  as 

asserted.   
 

Theorem 3.5 If  ( ) is a generator of a   -quasi-semigroup  (   ) on a Banach space  , then for    , 

 ( )     is a generator of    -quasi-semigroup  

 (   )       (   ) for all      . 

Proof.  It is easy to show that  (   ) is a   -quasi-semigroup. Furthermore, for     and    , 

   
    

 (   )   

 
     

    

     (   )   

 
  

                                                                                                   [   (   )  
 

  
 (   )]|

   
 

                                                                                                   ,   (   )   (   ) (   )-|
   

 

                                                                                                ( )      
So,  ( )     is the generator of a   -quasi-semigroup  (   ).  

 
The following we shall analyze the necessary and sufficient conditions of the Hille-Yosida theorem 

in order to an operator generates a quasi-semigroup. To achieve this aim we introduce the so called Yosida 

approximation, (see [3], [5], [17], and [18]). For    ( ) we set  

      (   )     (   )      ( ).                                         (9) 

We note that 

  (   )    (   )     and        (   )   (   )                               (10) 

hold for all    ( ). 

 

Lemma 3.6 Let  ( ) be a closed, densely defined and       such that ,   )   ( ( )) and  

‖ (   ( ))‖  
 

 
 

for all    . Then   (   ( ))    as     for all     and  

  (   ( ))   ( )  as     for all    .  

Proof. Let    . Equation (10) and the assumptions yield that  
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‖  (   ( ))   ‖  ‖ (   ( )) ( ) ‖  
 

 
‖ ( ) ‖    

as    . Because   (   ( )) is uniformly bounded, by  , the first assertion follows. The second one is a 

consequence of the first assertion, taking    ( )  and using (10). 
 

Theorem 3.7 If  ( ) is a closed, densely defined on   and       such that ,   )   ( ( )) and  

‖ (   ( ))
 
‖  

 

(   ) 
      

for all    , then  ( ) generates a   -quasi-semigroup  (   ). Moreover, ‖ (   )‖       for all 

     . 

Proof. By using Yosida approximation we set  

  ( )    ( ) (   ( ))     (   ( ))     

for all    ,    . Lemma 3.6 and assumptions imply that  

        ( )   ( )  for all    . 

Let    . We define  

  ( )      ( )      ∑
(   ) 

  

 

   
 (   ( ))   

Hence 

‖  ( )‖      ∑
(   ) 

  

 

(   ) 

 

   
 

                                                                                       
(

  

   
) 

   
.

  

   
/ 

                                                (11) 

Next, take      ,     ,     and   ,    -. Obvious, it holds that   ( )  ( )    ( )  ( ) and  

  ( )    ( )    ( )∑
  

  

 

   
  

 ( )  ∑
  

  

 

   
  

 ( )  ( )      ( )  ( )  

Consequently, we can compute 

    ( )      ( )  ∫
 

  
 (   )  ( )

 

 

    ( )     ∫  (   )  ( )    ( )
 

 

(  ( )   ( ))      

Equation (7) implies that 

‖  ( )      ( ) ‖  ‖    ( )      ( ) ‖    ‖  ( )    ( ) ‖      as       .       (12) 

Therefore, (  ( ) ) is a Cauchy sequence, and so it converges in  . Furthermore, we have that (  ( )) is 

equicontinuous on  . Since   is dense in  , then we can extend this convergence to every    , (see 

Lemma 3.8 of [16]). Hence, we may define  

 (   )     
   

  ( )  

for all       and    . In facts,  (   )    and  

 (     )     
   

 (   )      
   

        
   

      (     ) (   )  

for all        . By letting     in (12), we deduce that   

‖  ( )   (   ) ‖    ‖  ( )   ( ) ‖ 

for all   ,    -. This states that (  ( ) ) uniformly converges to  (   )  on ,    -. Therefore,  (   )  is 

continuous for all    . Finally, by (11) there exists continuous increasing function    on ,   ) such that 

‖ (   )‖    (   ) 

where   (   )      . Thus  (   ) is a   -quasi-semigroup. 

Let  ( ) be the generator of  (   ). For     and    , we have  
 

 
( (   )   )     

   

 

 
(    ( )   )     

   

 

 
∫     ( )   

 

 

    
 

 
∫    ( ) ( ) 

 

 

     

By letting     , it follows that     (B(t)) and  ( )   ( ) .  

Now, if    , then by proof of Theorem 3.4 we have  

(    ( ))     
Since we assume that  ( ) is a generator, then Theorem 3.2 (a) gives  

(    ( )) ( ( ))     
However,  ( )   ( ) , and hence  

(    ( ))  (    ( )) ( ( ))  
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Thus,    ( ( )), and this proves that  ( )   ( ).  

 

We call Theorem 3.7 as Hille-Yosida theorem in quasi-semigroups version. In fact, this is just the 

sufficient condition of Hille-Yosida theorem. The necessary condition of the theorem is not valid for any 

quasi-semigroups. Example 3.3 and comments thereon explain this condition. As consequence,  Theorem 3.7 

gives sufficient condition that guarantees the existence and uniqueness solution of the time-independent 

abstract Cauchy problems (2) and (3), see [8] and [11].  

 

Corollary 3.8 [8, 11] If  ( ) is the generator of   -quasi-semigroup  (   ) on a Banach space  , then for 

each      and     the initial value problem  

 ̇( )   (   ) ( )  ( )    ,                                          (13) 

admits a unique solution. 

 
4. Applications  

In this section we give some examples of application of   -quasi-semigroups to solve the partial differential 

equations completed by initial value or boundary conditions. 

 

Example 4.1  For      consider the boundary condition problem  

  

  
(   )   (   )

   

   
(   )           

    (   )   (   )    

                            (  ) 

where   is a continuous function with  ( )    for    .  

 Let   be a Hilbert space of   ,   - and the operator    ( )     given by  

   
   

   
 

and 

 ( )  *                                               ( )   ( )   +. 
 The boundary condition problem (14) can be written as  

 ̇( )   (   )  ( )                                                            (15) 

where   is a generator of   -semigroup  ( ) that given  

 ( )  ∑      
 

   
〈    〉  

where         and   ( )     (   ). From Example 2.5, the family of bounded operators  

 (   )   ( (   )   ( ))       

is a   -quasi-semigroup with the generator  ( )   ( )  and    ( ) which is dense in  . According to 

Theorem 3.2 (c) and Corollary 3.8, then for each      the problem (15) admits a unique solution  

 ( )   (   )    ( )      
Therefore, the initial value problem (14) has a unique solution  

 (   )   ( (   )   ( ))   ( ) 

where  ( )  ∫  ( )
 

 
  . 

 

Example 4.2  Given a boundary condition problem  

  

  
(   )  

 

 ( )
(

 

  
( ( )

  

  
(   ))   ( ) (   ))            

  

  
(   )  

  

  
(   )    

              (  ) 

where           
  

  
  are continuous functions on the interval ,   - with  ( )    and  ( )   . 

 Let   be a Hilbert space of   ,   - and     is the Sturm-Liouville operator that defined as  

     
 

 
( 

 

  
( 

  

  
)    ) 

on a domain  
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 (   )  *                                            ( )      ( )   +  
 The boundary condition problem (16) can be written as  

 ̇( )    ( )                                                                          (17) 

where        is the generator of a   -semigroup  ( ) with  ( )   (   ), see [3] and [4]. 

Example 2.2 states that the family of bounded operators  

 (   )   ( )       

is a   -quasi-semigroup with its generator  ( )    and    ( ) which is dense in  . Furthermore, for 

each      (17) admits a unique solution  

 ( )   (   )    ( )      
Thus, the boundary condition problem (16) has a unique solution  

 (   )   ( )  ( )  
 

5. Conclusions 
In this paper we have discussed the fundamental properties of quasi-semigroups. This investigation has be 

done based on the existing properties of semigroups. The results show that some properties inline to the 

properties of semigroups, although the others do not. Especially, the Hille-Yosida theorem does not hold in 

C0-quasi-semigroup except for the sufficient condition. On the final part, we  have showed the powerfulness 

of C0-quasi-semigroup to solve the problems related to PDE’s. The next works, we shall investigate the 

contraction and Riesz-spectral in quasi-semigroups version.  
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