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Abstract. Behaviour analysis for host-vector model without control of dengue disease is based 

on the value of basic reproduction number obtained using next generation matrices. 

Furthermore, the model is further developed involving a preventive control to minimize the 

contact between host and vector. The purpose is to obtain an optimal preventive strategy with 

minimal cost. The Pontryagin Minimum Principal is used to find the optimal control 

analytically. The derived optimality model is then solved numerically to investigate control 

effort to reduce infected class. 

1. Introduction 
 In the host-vector epidemic model, the population is divided into the host, in this case humans, 

and the vector, the Aedes aegypti mosquito as the carrier of the dengue virus. Research on the 

dynamic behaviour of the spread of dengue fever using a host-vector model by assuming that there is 

immunity after recovery has been performed by Esteva [1]. But in reality, dengue fever is caused by 

the dengue virus that has four serotypes, and a person can be infected by dengue fever again with a 

different serotype. The mathematical model that addresses this has been done by Soewono and 

Apriatna [2]. Their model has assumed of becoming susceptible again after recovering from a dengue 

fever, but has not considered the possibility of infected hosts that cannot spread the dengue fever. 

  Therefore, this paper discusses the extension of a dengue fever model where after recovery a 

host can be susceptible again. In addition, it is also assumed that there are some infected hosts but 

cannot spread the dengue fever. The proposed model (i.e. the first proposed model) and then will be 

analysed on its behaviour based on the value of the basic reproduction number ( [3], [4], [5]). 

 Furthermore, the first model will be expanded by adding a control variable. Research on the 

optimal control using control insecticide has been carried out by Rodrigues [6]. The results show that 

the control must be done repeatedly for the best result. But this leads to the increasing of the cost 

control. Dumont’s research result [7] shows that using a combination treatment with chemicals, larvae 

control and adult mosquitoes can decrease the epidemic. Of course it is not easy to be done as it 

requires more data.  

 On the other hand, WHO [8] brings out some strategies to resolve the epidemic by prevention 

and control. Therefore, this paper also discusses the behaviour of our first proposed model if we give a 

preventive control variable to the model (i.e. second proposed model). This second model then will be 
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analysed analytically by Pontryagin Minimum Principle. The behaviour of the first and second model 

(before and after being given controls) will be done numerically. At the end, we obtain the most 

effective control recommendations to minimize the dengue epidemic.  

2. Mathematical Model of Dengue Disease without Control 

The host population is divided into susceptible class, infectious class and recoverable 

(immune) class. Vector population are divided into susceptible class and infectious class. There is no 

recoverable (immune) class in the vector population as mosquitoes will always carry a dengue virus in 

their body for all their life. The spread of the dengue fever starts from the infected host is bitten by the 

vulnerable mosquito, resulting in the transmission of dengue virus to the mosquito, so the mosquito 

becomes infected. If the infected mosquito then bites the vulnerable host, then there will be a 

transmission which result on the host becomes infected. And so on. 

Assume ( )HS t  represents the host population on the vulnerable class at �, ( )HI t represents the 

host population for the infectious class at �, ( )HR t represents the host population for the recoverable 

class at �, ( )VS t denotes the vector population for the vulnerable class at �, and ( )VI t
  

denotes the 

vector population for infectious class at �. The population total for the host and the vector is denoted 

by H
N

 
and V

N , respectively, and assumed they have a constant value. 

The birth and death rate in the host population are assumed to be equal, denoted by H
µ . If � 

denotes the number of mosquito bites per day, then for V
N

 
mosquitoes there will be will V

bN
 

mosquito bites per day. This means that the host will receive as much as V V

H V

bN I

N N
 infected mosquito 

bite per day. If H
β

 
denotes the transmission rate from the mosquito to the host, then the infection rate 

of the susceptible hosts is defined as V V

H

H V

bN I

N N
β  or V

H

H

bI

N
β . We assumed that the recoverable host can 

be susceptible again to the dengue fever, and α  denotes this state. The recovery rate is denoted by 

H
γ . 

The growth rate for the population vector is denoted by � and the mortality rate for the vector 

is denoted by Vµ . As one mosquito will bite 
H

b

N
per day per person, then one mosquito will get the 

virus by 
H

H

b
I

N
 per day. If Vβ

 
denotes the transmission rate from the host to the mosquito, the 

infection rate per susceptible mosquito is
V H

H

b
I

N
β . Furthermore, in this first proposed model, we also 

calculate the percentage of the infected hosts that cannot spread the dengue fever (ε ). It means there 

will be ( )1 ε−
 
infected hosts that can spread the dengue fever. Thus, we obtain the infection rate per 

susceptible mosquito as ( )1V H

H

b
I

N
β ε− . 

The following Fig.1 is the transmission diagram for the spread of the dengue fever by taking 

all the above assumptions.  
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The mathematics model for the dengue fever transmission is given as follow. 

      

 

( )H H H V

H H H H H

H

dS t bS I
N S R

dt N

β
µ µ α= − − +    (1a) 

( )H H H V

H H H H

H

dI t bS I
I I

dt N

β
µ γ= − −     (1b) 

( )H

H H H H H

dR t
I R R

dt
γ µ α= − −      (1c) 

( ) ( )1V V V H

V V

H

dS t bS I
A S

dt N

β ε
µ

−
= − −     (1d) 

( ) ( )1
V V V H

V V

H

dI t bS I
I

dt N

β ε
µ

−
= −     (1e) 

where H H H H
S I R N+ + =

 
and V V V

S I N+ = . As V
µ  denotes the mortality transmission for the 

vector, thus the total of mortality for vector population is denotes by V VNµ . In the other hand, the rate 

of change of the vector population is denoted by V
dN

dt
, which is the recruitment rate subtracted by the 

total of mortality, means that V
V V

dN
A N

dt
µ= − . Hence, for t → ∞ , the solution of V

N towards 
V

A

µ
 

We obtain V V

V

A
S I

µ
+ = . 

 Let the proportion for each class is denoted by 

1 2 3, , ,H H H

H H H

S I R
x x x

N N N
= = =  

4 ,V

V

S
x

A
µ

= and 
5

V

V

I
x

A
µ

=  

and given that ( )3 1 2 4 51 , 1x x x x x= − + = − . Equation (1a) can be written as   
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( )1 1H H H V

H H H H H

H H H

dS t bS I
N S R

N dt N N

β
µ µ α

   
= − − +   

  
 

      

( )( )1
1 5 1 1 2

1
H

V

H H

H

Ab
dx

x x x x x
dt N

β
µ

µ µ α⇔ = − − + − +    (2a) 

while for (1b), we obtain 

( )1 1H H H V

H H H H

H H H

dI t bS I
I I

N dt N N

β
µ γ

   
= − −   

  
 

2
1 5 2 2

H
V

H H

H

Ab
dx

x x x x
dt N

β µ
µ γ⇔ = − −      (2b) 

Using the same way, we derive (1e) as follow. 

( ) ( )11 1V V V H

V V

H
V V

dI t bS I
I

A Adt N

β ε
µ

µ µ

   − 
= −   

   
 

( ) ( )5
5 2 5

1 1 .
V V

dx
b x x x

dt
β ε µ⇔ = − − −  .    (2c) 

The equilibrium point of System (2) is achieved when 51 20, 0, 0
dxdx dx

dt dt dt
= = = . Using this 

condition, we have two equilibrium points that are ( )1,0,0 ,  which is called as disease free, and

( )* * *

1 2 5, , ,x x x with 

( ) ( )( ) ( )( )( )
( ) ( )( ) ( )( ) ( )( )

*

1

H H H V H H V H V V

V V H H H H V V H H H H V

N b b
x

b b bA bA b b N

µ γ µ µ γ α µ µ α εβ β

β εβ β µ γ αβ εβ β µ α µ γ µ

+ + + − + −
=

− + + − − + +
 

( ) ( ) ( ) ( )( )
( ) ( )( )( ) ( )( ) ( )( )

2

*

2

H H V V H H H H V

V V H H H H V V H H H H V

bA b b N
x

b b bA bA b b N

µ α β β εβ µ α µ γ µ

β εβ β µ γ αβ εβ β µ α µ γ µ

+ − − + +
=

− + + − − + +
 

( ) ( ) ( ) ( )( )
( )( ) ( ) ( )( )

2

*

5 ,
H H V V H H H H V

H H H H V H H V V

bA b b N
x

bA bA bA b b

µ α β β εβ µ α µ γ µ

β µ γ αβ µ µ α β εβ β

+ − − + +
=

+ + − + −
 

which is called as the endemic equilibrium point.  

Then, we will discuss about the value of secondary infections as a result of the first infection. 

This value is called the basic reproduction number. To determine this value, we use the next 

generation matrix method [9]. 

Defined matrix � as a matrix whose entries are the first derivative of all terms that "enters" the 

infectious class at ( )1,0,0 . 

( )

( )( )

( )( )

( )

( )
1 5

2

2 2

1,0,0

1 5

2

5 5 1,0,0

1
0 1

0

1

H

VH V

V

H

H
H V

VH V

bA
x x

b xN
b

x x
F bA

bA
Nx x

b xN

x x

β

β εµ
β ε

β
β µ

β εµ

  
∂   ∂ −    −  ∂ ∂   = =      ∂    ∂ −  
 ∂ ∂ 
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We also define matrix V whose entries are the first derivatives from the terms that are “out” from the 

infectious class at ( )1,0,0 . 

( )

( ) ( )

( ) ( )

( )

( )

2 2 5 5

2 2 5

1,0,0
22 2 5 5 1,0,0

5 5 1,0,0

0

0 0

H H V V

H H V H H

V V VH H V V

x bx x x

x x bx
V

bxx bx x x

x x

µ γ β µ

µ γ β µ γ

β µ µµ γ β µ

 ∂ + ∂ +
 

∂ ∂ + +    = = =     +∂ + ∂ +    
 

∂ ∂  

 

Let G is a product of matrix F and 
1V −
, then 

( )

( )

1
0

0

V

V

H

H V H H

b

G
bA

N

β ε

µ

β

µ µ γ

− 
 
 =
 
 

+ 

 

The value of the basic reproduction number is obtained from the biggest eigen value from matrix G, 

which is 
( )

( )0 2

1
V H

H V H H

b bA
R

N

β ε β

µ µ γ

−
=

+
. If  

( )
( )0 2

1V H

H V H H

b bA
R

N

β ε β

µ µ γ

−
=

+
,    (3) 

 then 
0 0R R= . 

  Based on the value of the basic reproduction number (3), it is easy to show if 0
1R < , then 

equilibrium point ( )1,0,0 is asymptotically stable, and if 
0

1R > , the equilibrium point ( )1,0,0 is not 

stable. Furthermore, the endemic equilibrium point ( )* * *

1 2 5, ,x x x is stable if 
0

1R > . 

3. Optimal Control 
This section discusses about the extension of the transmission model of dengue fever (1) 

controlled by the prevention control variable so that the contact between the host and the mosquito can 

be reduced, and denoted by 1u , where 10 1u≤ ≤ . We obtain the following model 

( )
( )11

H H H V

H H H H H

H

dS t bS I
N u S R

dt N

β
µ µ α= − − − +   (4a) 

( )
( )11

H H H V
H H H H

H

dI t bS I
u I I

dt N

β
µ γ= − − −    (4b) 

( )H

H H H H H

dR t
I R R

dt
γ µ α= − −     (4c) 

( )
( )

( )
1

1
1

V V V H

V V

H

dS t bS I
A u S

dt N

β ε
µ

−
= − − −    (4d) 

( )
( )

( )
1

1
1

V V V H

V V

H

dI t bS I
u I

dt N

β ε
µ

−
= − −    (4e) 
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It can be seen that the infection from the susceptible host occurs because there is a contact 

with the infected mosquito, thus the infection rate is H V
H

H

bS I

N
β . In the other hand, assume that the 

prevention control in order to reduce the contact between the host and the mosquito is denoted by 1u , 

thus ( )11 u−  is the possibility of control failure.  Hence, the infection rate will become 

( )11 H H V

H

bS I
u

N

β
−  if the prevention control is given. Meanwhile, the infection of the susceptible 

mosquito happens because there is a contact with the host, thus the infection rate per susceptible 

mosquito is ( )1
V V H

H

b
S I

N
β ε− . If the prevention control is given, then the infection rate will 

become ( ) ( )11 1V V H

H

b
u S I

N
β ε− − . The prevention efforts in this case could be a counselling about 

the dengue fever, the provision of the abate powder or the fogging readiness if necessary. 

 
 

To investigate the optimality of those efforts, given the objective function J, namely to 

minimize the infected host class and the cost to implement the 1u
 
control, 

( ) ( ) ( )( )2

1 1

0

T

HJ u BI t Cu t dt= +∫      (5) 

where B is the weights for the infected hosts class, while C is the weights for prevention efforts. It 
means that we will find the solution from (5), which minimizes the number of the infected hosts with a 

minimal ( )1u t
 
control cost. In other words, will be sought so an 

*

1u optimal control such that  

( ) ( ){ }*

1 1 1minJ u J u u= ∈ Γ      (6) 

with system (4) as a constraint and { }1 1 1 measurable, with 0 1u u uΓ = ≤ ≤  is a control set.  

 Further, we define Hamiltonian as follow. 

( ) ( )

( ) ( )

( ) ( )
( )

( )
( )

2

1

1 1 2 1

3 4 1

5 1

1 1

1
1

1
1

H

H H V H H V

H H H H H H H H H

H H

V V H

H H H H H V V

H

V V H

V V

H

H BI t Cu t

bS I bS I
N u S R u I I

N N

bS I
I R R A u S

N

bS I
u I

N

β β
δ µ µ α δ µ γ

β ε
δ γ µ α δ µ

β ε
δ µ

= +

   
+ − − − + + − − −   

   

− 
+ − − + − − − 

 

− 
+ − − 

 

 

where 1 2 5, ,...,δ δ δ
 
are costate variable. Furthermore, we use Minimum Pontryagin Principal to give 

an idea about the existence of optimal control through the following Lemma.  

Lemma 1 

Given 
*

1u  as the optimal control that minimizes ( )1J u
 
for Γ  with System (4) as the constraint then 

there are costate variables 1 2 5, ,...,δ δ δ such that   
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( ) ( )1
1 1 2 11 1H V H V

H

H H

bI bId
u u

dt N N

β βδ
δ µ δ
 

= − + − − 
 

 

( ) ( )
( )

( )
( )

2
2 3 4 1 5 1

1 1
1 1

V V V V

H H H

H H

bS bSd
B u u

dt N N

β ε β εδ
δ µ γ δ γ δ δ

− −
= − + + − + − − −  

( )3
1 3 H

d

dt

δ
αδ δ µ α= − + +  

( )
( )

( )
( )

4
4 1 5 1

1 1
1 1

V H V H

H H

bI bId
u u

dt N N

β ε β εδ
δ δ

− −
= − − −  

( ) ( )5
1 1 2 1 51 1H H H H

V

H H

d bS bS
u u

dt N N

δ β β
δ δ δ µ= − − − +  

with transversality conditions ( ) 0, 1,...,5i T iδ = = , and the *

1u satisfies the optimality condition 

( ) ( )
( )* ** *

2 1 5 4

*

1

1

min max 0, ,1
2

V V HH H V

H H

bS IbS I

N N
u

C

β εβ
δ δ δ δ

  −
− + −  

  =        

. 

Proof. The differential equations developing the costate variables are obtained by differentiation of the 

Hamiltonian function that evaluated at the optimal control. Then the costate system can be written as 

follow 

( ) ( )1
1 1 2 11 1H V H V

H

H H H

bI bId H
u u

dt S N N

β βδ
δ µ δ
 ∂

= − = − + − − 
∂  

 

( ) ( )
( )

( )
( )

2
2 3 4 1 5 1

1 1
1 1

V V V V

H H H

H H H

bS bSd H
B u u

dt I N N

β ε β εδ
δ µ γ δ γ δ δ

− −∂
= − = − + + − + − − −

∂
 

( )3
1 3 H

H

d H

dt R

δ
αδ δ µ α

∂
= − = − + +

∂
 

( )
( )

( )
( )

4
4 1 5 1

1 1
1 1

V H V H

V H H

bI bId H
u u

dt S N N

β ε β εδ
δ δ

− −∂
= − = − − −

∂
 

( ) ( )5
1 1 2 1 51 1H H H H

V

V H H

d bS bSH
u u

dt I N N

δ β β
δ δ δ µ

∂
= − = − − − +

∂
 

with transversality conditions ( ) 0, 1,...,5i T iδ = = . On the interior of the control set, 10 1u≤ ≤ , the 

optimal control at the solutions * * * * *
, , , ,H H H V VS I R S I  of the corresponding state system (4) is derived by 

 
( ) ( )

( ) ( )
( )

1

* * * ** * * *

*

1 1 2 4 5

* ** *

2 1 5 4

*

1

0

1 1
2 0

1

2

V V H V V HH H V H H V

H H H H

V V HH H V

H H

H

u

bS I bS IbS I bS I
Cu

N N N N

bS IbS I

N N
u

C

β ε β εβ β
δ δ δ δ

β εβ
δ δ δ δ

∂
=

∂

− −
⇔ + − + − =

−
− + −

⇔ =

 

Hence, we obtain 
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( ) ( )
( )* ** *

2 1 5 4

*

1

1

min max 0, ,1 .
2

V V HH H V

H H

bS IbS I

N N
u

C

β εβ
δ δ δ δ

  −
− + −  

  =        

 

4. Numerical Simulation 
  In this section, we present numerical simulation to describe the optimal solution of the host-

vector model. The parameter values are given as below.  

Table 1. Values of Parameters used in Host-Vector Model 

   

Parameter Value Reference 

α  0,9619 [10] 

V
µ  0,071428 [11] 

b 0,5 [1] 

Vβ  1 [1] 

Hβ  0,75 [1] 

Hµ  0,9619 [12] 

Hγ  0,1428 [1] 

 

A susceptible host who is bitten by infected mosquito cannot transmit the virus directly, he/she needs 

3-14 days in this condition [13], so the value of ε is between 1
3

and 1
14

. Using 400A = , 

10000
H

N = and parameter in Table 1, we have
0

7 1R = > . It means without control, any solution will 

tend to the endemic equilibrium point. The initial values used were

( ) ( ) ( )0 0,6; 0 0,3; 0 0,1
H H V

S I I= = = . As shown in Figure 2, for susceptible hosts’ class, the 

population rose initially, but dropped later on. This is because the population will go to the infectious 

class. While with the presence of the control, the population of the susceptible class increased over 

time. 

 

 
Figure 2. Susceptible human with and without control 
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 Figure 3 explains that without control, the population of the infected hosts’ increases. 

Conversely when the control is given, the population decreases sharply. In Figure 4, it can be seen that 

the vector population increases, both with and without controls. But, the population with control rose 

faster and higher than without control. 

 

 
Figure 3. Infected human with and without 

control 

 
Figure 4. Infected vector with and without control 

Figure 5 shows the optimal control function 
1u when the value in (5) are chosen 1B = and 50C = . 

It can be seen that with preventive control can reduce the number of infectious host significantly. 

 

 

 

 

 

 

 

 

 

5. Conclusion  

  This paper has discussed the development of a mathematical model for the dengue fever 
spread in the form of host-vector. The model then is extended by giving a prevention control for the 

spread. We described analytically that using Pontryagin Minimum Principle there is an optimal 

control. We also proved numerically that with a control strategy, we can decrease the population of 
infectious class both for the host and the vector.  

 

 

 
Figure 5. Optimal control function 
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