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Abstract. Let G(V (G), E(G)) be a finite simple graph with |V (G)| = νG and |E(G)| = eG.
Let H be a subgraph of G. The graph G is said to be (a, d)-H-antimagic covering if every edge
in G belongs to at least one of the subgraphs G isomorphic to H and there is a bijective function
ξ : V ∪ E → {1, 2, . . . , νG + eG} such that all subgraphs H ′ isomorphic to H, the H ′-weights

w(H ′) = Σv∈V (H′)ξ(v) + Σe∈E(H′)ξ(e)

constitutes an arithmetic progression {a, a + d, a + 2d, . . . , a + (t − 1)d}, where a and d are
positive integers and t is the number of subgraphs G isomorphic to H. Such a labeling is called
super if the vertices contain the smallest possible labels. This research provides super (a, d)-
C3-antimagic total labelng on triangular ladder TLn for n ≥ 2 and super (a, d)-Cs+2-antimagic
total labeling on generalized Jahangir Jk,s for k ≥ 2 and s ≥ 2.

1. Introduction
Wallis [13] defined a graph labeling as a mapping from the set of vertices, edges, or both

vertices and edges to the positive or non-negative integers. The types of graph labeling which
is still widely studied today are magic labelings and antimagic labelings. Magic labelings were
introduced by Sedlác̆ek [12] in 1963. It was followed by Kotzig and Rosa [6] who developed magic
labelings into an edge-magic total labeling. Furthermore, Gutiérrez and Lladó [2] generalized
the concept of an edge-magic total labeling into an H-magic covering.

Let G = (V,E) be a finite and simple graph. An edge-covering of G is a family of
different subgraphs H1, H2, . . . ,Hk such that every edge in G belongs to at least one of the
subgraphs Hi for 1 ≤ i ≤ k. If each Hi is isomorphic to H, then G admits an H-covering. A
graph G is said to be an H-magic if it admits an H-covering and there is a bijective function
f : V ∪ E → {1, 2, . . . , νG + eG} such that for any subgraph H ′(V ′, E′) of G isomorphic to H,
Σv∈V (H′)ξ(v) + Σe∈E(H′)ξ(e) = m(f), where m(f) is a magic sum. We call an H-supermagic if
its vertices contain the smallest possible labels.

There are a large number of research problems on H-magic total labeling that have been
applied on some classes of graphs. Lladó and Moragas [7] showed that a wheel graph, a windmill
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graph, and a book graph are cycle-magic. Ngurah et al. [10] studied cycle-supermagic covering
on a triangular ladder graph, a book graph, and grids Pm × Pn for m ≥ 3 and n = 3, 4, 5, then
Roswitha et al. [11] proved that a generalized Jahangir graph Jk,s, a complete bipartite graph
K2,n for n ≥ 2, and a wheel graph Wn for n odd and n ≥ 4, respectively, are Cs+2-supermagic,
C4-supermagic, and C3-supermagic.

In 2009, Inayah et al. [3] introduced an (a, d)-H-antimagic covering. A graph G is said to
be an (a, d)-H-antimagic covering if there exists a bijective function ξ : V ∪E → {1, 2, . . . , vG +
eG} such that for every subgraph H ′ isomorphic to H, w(H ′) = Σv∈V (H′)ξ(v) + Σe∈E(H′)ξ(e)
constitutes an arithmetic progression {a, a+d, a+2d, . . . , a+(t−1)d} where a and d are positive
integers and t is the number of subgraphs G isomorphic to H. Inayah et al. [3] studied an (a, d)-
H-antimagic covering on fan graph for some d, then Inayah et al. [5] proved that shackles of a
connected graph H is a super (a, d)-H-antimagic.

This research attempts to study super (a, d)-C3-antimagic on triangular ladder graph
TLn for n ≥ 2 and super (a, d)-Cs+2-antimagic on generalized Jahangir graph Jk,s for k ≥ 2 and
s ≥ 2.

2. Main Results
2.1. k-balanced multisets
Maryati [8] and Maryati et al. [9] defined a multiset as a set that allows the existence of the
same elements in it. Let k ∈ N and Y be a multiset that contains positive integers. Y is said to
be k-balanced if there exists k-subsets of Y , namely Y1, Y2, . . . , Yk, such that for every i ∈ [1, k],

|Yi| = |Y |
k ,
∑
Yi =

∑
Y

k ∈ N, and
⊎k

i=1 Yi = Y . If those are the cases for every i ∈ [1, k], then Yi
is called a balanced subset of Y .

Lemma 2.1 [Roswitha et al. [11]] Let x and k be nonnegative integers. Let X = [x+ 1, x+ k]
with |X| = k and Y = [x + k + 1, x + 2k] where |Y | = k. Then, the multiset K = X ] Y is
k-balanced for j ∈ [1, k].

Next, we have the following lemma.

Lemma 2.2 Let x be a nonnegative integer and k ≥ 2 be an even integer. If Y = [x + 1, x +
k
2 ] ] [x+ 2, x+ 2k + 1] ] [x+ 3k

2 + 2, x+ 2k + 1], then Y is k-balanced for i ∈ [1, k].

Proof. For every i ∈ [1, k] we define a multiset Yi = {ai, bi, ci}, where

ai =

{
x+ d i2e, for i odd;
x+ d i+1

2 e, for i even.

bi = x+
3k

2
+ 2− i

ci =

{
x+ 3k

2 + 2 + b i2c, for i odd;
x+ 3k

2 + 1 + i
2 , for i even.

Furthermore, we defined

A = {ai | 1 ≤ i ≤ k} = [x+ 1, x+
k

2
] ] [x+ 2, x+

k

2
+ 1];

B = {bi | 1 ≤ i ≤ k} = [x+
k

2
+ 2, x+

3k

2
+ 1];

C = {ci | 1 ≤ i ≤ k} = [x+
3k

2
+ 2, x+ 2k + 1] ] [x+

3k

2
+ 2, x+ 2k + 1].

If A ] B ] C = Y and
⊎k

i=1 Yi = Y , then for every i ∈ [1, k] we obtained |Yi| = 3 and∑
Yi = 3x+ 3k + 4. Therefore, Y is k-balanced.
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2.2. (k, δ)-anti balanced multisets
Inayah [4] defined (k, δ)-anti balanced multiset as follows. Let k, δ ∈ N and X be a set containing
the elements of positive integers. A multiset X is said to be (k, δ)-anti balanced if there exists

k subsets from X, i.e. X1, X2, . . . , Xk such that for every i ∈ [1, k], |Xi| = |X|
k ,
⊎k

i=1Xi = X,
and for i ∈ [1, k − 1],

∑
Xi+1 −

∑
Xi = δ is hold. Here, we give several lemmas on (k, δ)-anti

balanced multisets.

Lemma 2.3 Let k, s ≥ 2 be integers. If X = [k + 2, 2k + 1], Y = [2, ks + 1], and Z =
[ks+ 2, 2ks+ 1], then the multiset K = (Y −X) ] Z is (k, 1)-anti balanced.

Proof. Let k, s ≥ 2 be integers. We define a multiset Ki = {aij | 1 ≤ j ≤ s}]{bij | 1 ≤ j ≤ s−1}
for i ∈ [1, k], where

aij =

{
(s+ j)k + 2− i, for j odd;
(s+ j − 1)k + 1 + i, for j even.

bij =

 j + i, for j = 1;
jk + 1 + i, for j even;
(j + 1)k + 2− i, for j odd and j ≥ 3.

It is obvious that for every i ∈ [1, k], |Ki| = 2s− 1, Ki ⊂ K, and
⊎k

i=1Ki = K. If s is odd, then
the sum of elements in Ki is

∑
Ki =

s−1
2∑

z=1

((s+ 2z − 1)k + 2− i) +

s−1
2∑

z=1

((s+ 2z − 1)k + 1 + i) + 2ks+ 2− i+ 1+

i+

s−1
2 −1∑
z=1

((2z)k + 1 + i) +

s−1
2 −1∑
z=1

(((2z + 1) + 1)k + 2− i) + ks− k + 1 + i

=2k(s2 − 1) + 3s− 2 + i.

If s is even, then the sum of elements in Ki is

∑
Ki =

s
2∑

z=1

((s+ 2z − 1)k + 2− i) +

s
2∑

z=1

((s+ 2z − 1)k + 1 + i) + 1 + i+

s
2−1∑
z=1

((2z)k+

1 + i) +

s
2−1∑
z=1

(((2z + 1) + 1)k + 2− i)

=2k(s2 − 1) + 3s− 2 + i.

Since
∑
Ki = 2k(s2−1)+3s−2+ i for every i ∈ [1, k] and for all s ≥ 2 and

∑
Ki+1−

∑
Ki = 1

for every i ∈ [1, k − 1], then K is (k, 1)-anti balanced.

Lemma 2.4 Let k, s ≥ 2 be integers. If X = [k + 2, ks+ 1] and Y = [ks+ 2, 2ks+ 1], then the
multiset Z = X ] Y is (k, 3)-anti balanced.

Proof. Suppose k, s ≥ 2 be integers. We defined a multiset Zi = {aij | 1 ≤ j ≤ s} ] {bij | 1 ≤
j ≤ s− 1} for i ∈ [1, k], where

aij =

{
ks+ k(j − 1) + i+ 1, for j odd;
k(s+ j − 1) + i+ 1, for j even.

bij =

{
k + j + i, for j = 1;
2 + 3k + k(j − 2)− i, for j > 1.

Hence, |Zi| = 2s − 1, Zi ⊂ Z, and
⊎k

i=1 Zi = Z for every i ∈ [1, k]. Since
∑
Zi =

2k(s2 − 1) + 3(s − 1) + 3i for every i ∈ [1, k] and for all s ≥ 2 and
∑
Zi+1 −

∑
Zi = 3 for

every i ∈ [1, k − 1], then Z is (k, 3)-anti balanced.
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Lemma 2.5 Let k, s ≥ 2 be integers. If X = [1, k(s− 1)] and Y = [k(s+ 1) + 2, k(2s+ 1) + 1],
then the multiset Z = X ] Y is (k, 5)-anti balanced.

Proof. Let k, s ≥ 2 be integers. We define the multiset Zi = {aij | 1 ≤ j ≤ s}]{bij | 1 ≤ j ≤ s−1}
for i ∈ [1, k], where

aij =

 k(s+ 1) + j − 1 + 2i, for j = 1, 2;
k(s+ 1) + k(j − 1) + 1 + i, for j odd and j ≥ 3;
k(s+ 1) + kj + 2− i, for j even and j ≥ 4.

bij =

{
k(j − 1) + i, for j odd;
kj + 1− i, for j even.

It is easy to verify that |Zi| = 2s − 1, Zi ⊂ Z, and
⊎k

i=1 Zi = Z for every i ∈ [1, k]. Since∑
Zi = 2k(s2 − 1) + 2s− 3 + 5i for every i ∈ [1, k] and for all s ≥ 2 and

∑
Zi+1 −

∑
Zi = 5 for

every i ∈ [1, k − 1], then Z is (k, 5)-anti balanced.

Lemma 2.6 Let x be a nonnegative integer and k ≥ 2 be an even integer. If X = [x + 1, x +
k] ] [x+ 2, x+ k + 1] ] [x+ 3, x+ k + 2], then X is (k, 3)-anti balanced.

Proof. Let k ≥ 2 be an even integer. For every i ∈ [1, k], we define the multiset

Xi = {x+ i, x+ 1 + i, x+ 2 + i}. It can be verified that |Xi| = 3, Xi ⊂ X, and
⊎k

i=1Xi = X for
every i ∈ [1, k]. Since

∑
Xi = 3x+ 3 + 3i for every i ∈ [1, k] and

∑
Xi+1 −

∑
Xi = 3 for every

i ∈ [1, k − 1], X is (k, 3)-anti balanced.

Lemma 2.7 Let x be a nonnegative integer and k ≥ 2 be an even integer. If Y = {x+1+2j, j =
0, 1, . . . , k} ] {x+ 2 + j, j = 0, 1, 2, . . . , 2(k − 1)}, then Y is (k, 2)-anti balanced.

Proof. Let k ≥ 2 be an even integer. For every r ∈ [1, k], we define the multiset Yr = {ar, br, cr},
where ar = 2k + 2 + x − 2r, br = x + 1 + 2r, cr = x − 1 + 2r. It can be verified that |Yr| = 3,

Yr ⊂ Y , and
⊎k

r=1 Yr = Y for every r ∈ [1, k]. Since
∑
Yr = 3x+ 2k+ 2 + 2r for every r ∈ [1, k]

and
∑
Yr+1 −

∑
Yr = 2 for every r ∈ [1, k − 1], Y is (k, 2)-anti balanced.

Lemma 2.8 Let x be a nonnegative integer and k ≥ 2 be an even integer. If Y = [x + 1, x +
k] ] [x+ 2, x+ 2k + 1], then Y is (k, 1)-anti balanced.

Proof. Let k ≥ 2 be an even integer. For every r ∈ [1, k], we define the multiset Yr = {ar, br, cr},
where ar = x+ r, br = x+ 1 + r, cr = x+ 2k + 2− r. It can be verified that |Yr| = 3, Yr ⊂ Y ,

and
⊎k

r=1 Yr = Y for every r ∈ [1, k]. Since
∑
Yr = 3x + 2k + 3 + r for every r ∈ [1, k] and∑

Yr+1 −
∑
Yr = 1 for every r ∈ [1, k − 1], Y is (k, 1)-anti balanced.

Lemma 2.9 Let x be a nonnegative integer and k ≥ 2 be an even integer. If Y = [x + 1, x +
2k] ] [x+ k + 2, x+ 2k + 1], then Y is (k, 1)-anti balanced or (k, 3)-anti balanced.

Proof. Let k ≥ 2 be an even integer. In this proof, we have two separated cases.
Case 1. For every i ∈ [1, k], we define the multiset Yi = {ai, bi, ci}, where ai = x + k + 1 − i,
bi = x+ k+ i, and ci = x+ k+ 1 + i. It is easy to check that |Yi| = 3, Yi ⊂ Y , and

⊎k
i=1 Yi = Y

for every i ∈ [1, k]. Since
∑
Yi = 3x+ 3k+ 2 + i and

∑
Yi+1 −

∑
Yi = 1 for every i ∈ [1, k− 1],

Y is (k, 1)-anti balanced.
Case 2. For every i ∈ [1, k], we define the multiset Yi = {ai, bi, ci}, where ai = x+i, bi = x+k+i,

and ci = x + k + 1 + i. It is easy to check that |Yi| = 3, Yi ⊂ Y , and
⊎k

i=1 Yi = Y for every
i ∈ [1, k]. Since

∑
Yi = 3x + 2k + 1 + 3i and

∑
Yi+1 −

∑
Yi = 3 for every i ∈ [1, k − 1], Y is

(k, 3)-anti balanced.
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Lemma 2.10 Let x be a nonnegative integer and k ≥ 2 be an even integer. If Y =
[x+ 1, x+ 2k + 1] ] {x+ 1 + 2j, j = 1, 2, . . . , k − 1}, then Y is (k, 2)-anti balanced.

Proof. Let k ≥ 2 be an even integer. For every i ∈ [1, k], we define the multiset Yi = {ai, bi, ci},
where

ai =

{
x− 1 + 2i, i ∈ [1, k2 ];
x+ 2k + 2− 2i, i ∈ [k2 + 1, k].

bi =

{
x+ 1 + 2i, i ∈ [1, k2 ];
x− 1 + 2i, i ∈ [k2 + 1, k].

ci =

{
x+ 2k + 2− 2i, i ∈ [1, k2 ];
x+ 1 + 2i, i ∈ [k2 + 1, k].

Clearly, |Yi| = 3, Yi ⊂ Y , and
⊎k

i=1 Yi = Y for every i ∈ [1, k]. Since
∑
Yi = 3x+ 2k+ 2 + 2i for

every i ∈ [1, k] and
∑
Yi+1 −

∑
Yi = 2 for every i ∈ [1, k − 1], Y is (k, 2)-anti balanced.

Lemma 2.11 Let x be a nonnegative integer and k ≥ 2 be an even integer. If Y =
[x+ 1, x+ 2k] ] {x+ 1 + 2j, j = 1, 2, . . . , k}, then Y is (k, 6)-anti balanced.

Proof. Let k ≥ 2 be an even integers. For every i ∈ [1, k], we define the multiset Yi = {ai, bi, ci},
where ai = x−1+2i, bi = x+2i, and ci = x+1+2i. It is easy to check that |Yi| = 3, Yi ⊂ Y , and⊎k

i=1 Yi = Y for every i ∈ [1, k]. Since
∑
Yi = 3x+ 6i for every i ∈ [1, k] and

∑
Yi+1−

∑
Yi = 6

for every i ∈ [1, k − 1], Y is (k, 6)-anti balanced.

2.3. Triangular ladder graph TLn

Jeyanthi and Maheswari (Gallian [1]) defined a triangular ladder graph TLn as a graph obtained
from the ladders Ln = Pn×P2 (n ≥ 2) with additional edges uivi+1 for 1 ≤ i ≤ n−1, where the
consecutive vertices of two copies of Pn are u1, u2, . . . , un and v1, v2, . . . , vn and the edges are
uivi for 1 ≤ i ≤ n. A triangular ladder graph TLn has |V (TLn)| = 2n and |E(TLn)| = 4n− 3.

Theorem 2.12 For n ≥ 2, a triangular ladder graph TLn admits a super (14n, 1)-C3-antimagic
labeling.

Proof. Let G be a triangular ladder graph, G−TLn and V (G) and E(G) be the sets of vertices
and edges of of G, respectively. Here, we define a bijective function ξ1 : V (G) ∪ E(G) →
{1, 2, . . . , 6n− 3} and ξ1(V (G) = {1, 2, . . . , 2n}. Let W = [1, 6n− 3] be the set of labels for all
vertices and edges ofG. PartitionW into two sets, i.e. K = [1, 2n] and L = [2n+1, 6n−3]. LetHi

be the arbitrary subgraphs C3 of G with V (Hi) = {v1, u1, v2, v1}, {u1, v2, u2, u1}, {v2, u2, v3, v2},
{u2, v3, u3, u2}, . . ., {vn−1, un−1, vn, vn−1}, {un−1, vn, un, un−1}. The number of subgraphs C3 of
G is (2n− 2).

Next, we use the elements of K to label the entire vertices of G, namely v1, u1, v2,
u2, . . . , vn, un, respectively. Such labeling is applied based on Lemma 2.6 with x = 0 and
k = 2n − 2. The elements of Xi are used to label all vertices in every subgraph Hi of G,
i.e. V (Hi). Since

∑
Xi = 3 + 3i for every i ∈ [1, 2n − 2] and

∑
Xi+1 −

∑
Xi = 3 for every

i ∈ [1, 2n− 3], so X is ((2n− 2), 3)-anti balanced.
Now, we label all edges of TLn using the elements of L. This labeling is applied

according to Lemma 2.7 with x = 2n and k = 2n − 2. The elements of Yr are used to label
all edges in every subgraph Hi of G, i.e. {un−1un, un−1vn, unvn}, {vn−1vn, un−1vn−1, un−1vn},
. . ., {u1u2, u1v2, u2v2}, {v1v2, u1v1, u1v2}, respectively. Since

∑
Yr = 10n − 2 + 2r for every

r ∈ [1, 2n − 2] and
∑
Yr+1 −

∑
Yr = 2 for every r ∈ [1, 2n − 3], so Y is ((2n − 2), 2)-anti

balanced.
After all the vertices and edges of G are labeled, we obtain w(Hi) =

∑
Xi +

∑
Yr as the

sum of labels from each subgraph Hi. If r = 2n − 1 − i, then w(Hi) =
∑
Xi +

∑
Y2n−1−i =
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3 + 3i + 14n − 4 − 2i = 14n − 1 + i for all i ∈ [1, 2n − 2]. Since w(Hi+1) − w(Hi) = 1 = d
and w(H1) = 14n = a, we can deduce that triangular ladder graph TLn is a super (14n, 1)-C3-
antimagic for n ≥ 2.

As a consequence of this result, a triangular ladder graph TLn is a super (a, d)-C3-
antimagic covering for d = 2, 3, 4, 5, 6, 9. It can be proved by using Lemma 2.8, Lemma 2.2,
Lemma 2.9 ((k, 1)-anti balanced), Lemma 2.10, Lemma 2.9 ((k, 3)-anti balanced), and Lemma
2.11 to L, respectively.

Corollary 2.13 For n ≥ 2, a triangular ladder graph TLn admits

(i) a super (12n+ 3, 2)-C3-antimagic total labeling,

(ii) a super (12n+ 4, 3)-C3-antimagic total labeling,

(iii) a super (12n+ 3, 4)-C3-antimagic total labeling,

(iv) a super (10n+ 6, 5)-C3-antimagic total labeling,

(v) a super (10n+ 6, 6)-C3-antimagic total labeling,

(vi) a super (6n+ 12, 9)-C3-antimagic total labeling.

2.4. Generalized Jahangir graph Jk,s
Gallian [1] defined a generalized Jahangir graph Jk,s as a graph contains ks+1 vertices consisting
of a cycle Cks and one additional vertex that is adjacent to k vertices of Cks at distance s to each
other on Cks. A generalized Jahangir graph Jk,s has |V (Jk,s)| = ks+ 1 and |E(Jk,s)| = ks+ k.

Theorem 2.14 For k, s ≥ 2, a generalized Jahangir graph Jk,s is a super (2ks2 + 4ks + 2k +
3s+ 6, 1)-Cs+2-antimagic.

Proof. Let G be a generalized Jahangir graph. Let the set of vertices of G, V (G) = {c, v!, v2, ...,-
vs, vs+1, ..., v2s, v2s+1, ..., vks} and the set of edges of G, E(G) = {cv1, cvs+1, ..., cvks}. We
define a bijective function ξ3 : V (G) ∪ E(G) → {1, 2, . . . , 2ks + k + 1} and we set ξ3(V (G) =
{1, 2, . . . , ks + 1}. Let W = [1, 2ks + k + 1], the set of labels for all vertices and edges of
G. Partition W into five sets, i.e. P = {1}, X = [k + 2, 2k + 1], Y − X = [2, ks + 1] \ X,
Z = [ks+2, 2ks+1], and L = [2ks+2, 2ks+k+1]. Next, we define Hi as any subgraph Cs+2 of G,
where V (Hi) = {c, v1, v2, . . . , vs+1, c}, {c, vs+1, vs+2, . . . , v2s+1, c}, {c, v2s+1, v2s+2,. . .,v3s+1, c},
. . ., {c, v(k−1)s+1, v(k−1)s+2, . . . , v1, c}. The number of subgraphs of G is kCs+2.

Next, we label all of the vertices and edges from every subgraph Hi of G. First, we label
the central vertex of G by the element of P , so ξ3(c) = 1. Furthermore, we put the elements of
X and L as the labels of vertices and edges that adjacent and incident to c, respectively. Let
k ≥ 2 and M = X ] L with |X| = k and |L| = k. Define Mi = {{ai, bi} | 1 ≤ i ≤ k}, where
ai = 2(k + 1)− i and bi = 2ks+ 1 + i for every i ∈ [1, k]. Furthermore, we define the sets

A = {ai | 1 ≤ i ≤ k} = [k + 2, 2k + 1];

B = {bi | 1 ≤ i ≤ k} = [2ks+ 2, 2ks+ k + 1].

If A ] B = M and
⊎k

i=1Mi = M , then by Lemma 2.1, for 1 ≤ i ≤ k, |Mi| = 2 and∑
Mi = 2ks+ 2k + 3. Therefore, M is k-balanced.

Next, we put the elements of Y −X and Z as the labels of vertices not adjacent to c and
edges which not incident to c. If (Y − X) ] Z = K, then for k ≥ 2 and i ∈ [1, k], by Lemma
2.3, we set Ki = {aij | 1 ≤ j ≤ s} ] {bij | 1 ≤ j ≤ s − 1} . Use the elements bij of Ki for every
i ∈ [1, k] and j ∈ [1, s − 1] to label every vertex not adjacent to c. Meanwhile, the elements
aij of Ki for every i ∈ [1, k] and j ∈ [1, s] are used to label the edge not incident to c. Since

Ki = k(2s2 − 2) + 3s− 2 + i for every i ∈ [1, k] and Ki+1 −Ki = 1 for every i ∈ [1, k − 1], so K
is (k, 1)-anti balanced.



7

1234567890

International Conference on Mathematics: Education, Theory and Application  IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 855 (2017) 012037  doi :10.1088/1742-6596/855/1/012037

We obtain the sum of labels from each subgraph Hi, w(Hi) = 1 + 2(
∑
Mi) +

∑
Ki =

2ks2 + 4ks + 2k + 3s + 5 + i for every i ∈ [1, k]. Since w(Hi+1) − w(Hi) = 1 = d and
w(H1) = 2ks2 + 4ks + 2k + 3s + 6 = a, it can be concluded that a generalized Jahangir
graph Jk,s is a super (2ks2 + 4ks+ 2k + 3s+ 6, 1)-Cs+2-antimagic for k, s ≥ 2.

The following corollary can be proved by using Lemma 2.1 to K ]L = [2, k+ 1]] [2ks+
2, 2ks + k + 1] and Lemma 2.4 to X ] Y = [k + 2, ks + 1] ] [ks + 2, 2ks + 1] for Corollary
2.15(1), then Lemma 2.1 to K ]L = [k(s− 1) + 1, ks]] [ks+ 2, k(s+ 1) + 1] and Lemma 2.5 to
X ] Y = [1, k(s− 1)] ] [k(s+ 1) + 2, k(2s+ 1) + 1] for Corollary 2.15(2).

Corollary 2.15 For k, s ≥ 2, a generalized Jahangir graph Jk,s admits

(i) a super (2ks2 + 4ks+ 3s+ 7, 3)-Cs+2-antimagic covering,

(ii) a super (2ks2 + 5ks− 2k + 2s+ 7, 5)-Cs+2-antimagic covering.
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