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ABSTRACT. This paper elaborates a research of the cancer patients after receiving a 

treatment in cencored data using Bayesian estimation under Linex Loss function for 

Survival Model which is assumed as an exponential distribution. By giving Gamma 

distribution as prior and likelihood function produces a gamma distribution as posterior 

distribution. The posterior distribution is used to find estimatior 𝜆̂𝐵𝐿 by using Linex 

approximation. After getting 𝜆̂𝐵𝐿 , the estimators of hazard function ℎ̂𝐵𝐿 and survival 

function 𝑆̂𝐵𝐿  can be found. Finally, we compare the result of Maximum Likelihood 

Estimation (MLE) and Linex approximation to find the best method for this observation 

by finding smaller MSE. The result shows that MSE of hazard and survival under MLE 

are 2.91728E-07 and 0.000309004 and by using Bayesian Linex worths 2.8727E-07 and 

0.000304131, respectively. It concludes that the Bayesian Linex is better than MLE. 

 

 

1. Introduction 

 

The Exponential distribution is a known distribution which can be used in many studies like biology, 

economics and demography. It is a very popular one-parameter distribution which is often used in 

survival model study, see [1]. Let 𝑇 is defined to be the time of failure of the entity known to exist at 

time 𝑡 = 0, and is therefore frequently called the failure time random variable. Now, if 𝑇 is the time to 

failure, then the probability of still functioning at time 𝑡 is the same as the probability that the failure 

is later (mathematically greater) than the value of 𝑡. The survival density function (SDF), probability 

density function (PDF) and hazard rate function (HRF) are defined  as below, 

 

𝑆(𝑡) = 𝑒−𝜆𝑡   .      𝑡 ≥ 0.  𝜆 ≥ 0 

𝑓(𝑡) = −
𝑑

𝑑𝑡
𝑆(𝑡) = 𝜆𝑒−𝜆𝑡 

 

𝜆(𝑡) =
𝑓(𝑡)

𝑆(𝑡)
= 𝜆 

(1) 

 

(2) 

 

(3) 

 
Besides, using Maximum Likelihood to estimate the parameters, Bayesian method is required in this 

research. It builds a posterior distribution by formulating a likelihood function of the exponential 

distribution and a prior. The Gamma distribution is an appropriate prior for it because if we switch the 

parameter  𝛼 with 1, it will change to be an Exponential distribution [2]. This research will observe 

survival probability of cancer patients after receiving the treatment in a cencored data. The data is 

taken from R versi 3.3.0 which has an exponential distribution. Cencoring is a feature that recurrent in 

lifetime and reliability data analysis, it occurs when exact lifetimes or run-outs can only be collected 

for a portion of the inspection units [3]. The survival study can predict probability of survival and 

hazard rate by some methods. There are some estimation methods in statistics. Bayesian is one of 

them which use likelihood function and prior distribution to find posterior distribution. The data is an 

Exponential distributed which will be composed with a Gamma distribution as its prior to construct a 

posterior distribution. It gives the relative weights to each parameter value after analizing the data [4]. 

The Bayesian inference has some approximations such as Generalised Non-informative Prior. Linear 

Exponential Loss Function, Lindley Approximation, General Entropy Loss Function and Squared 

Error Loss Function. 

 

2. Maximum Likelihood Estimation on Cencored Data 
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Cencoring is a way to handle an uncomplete data which is caused some events like death. loss or out 

from observation. According to [5], variables 𝑇1. … . 𝑇𝑛 represent 𝑛 individual lifetimes. A time 𝑡𝑖 is 

the lifetime or a cencoring time. The variable 𝛿𝑖 = 1 if 𝑇𝑖 = 𝑡𝑖  and 0 if 𝑇𝑖 > 𝑡𝑖 is called the cencoring 

or status  indicator for 𝑡1. Value 𝑡1 is obtained from  min(𝑇𝑖, 𝐶𝑖) , 𝑖 = 1,2,3, … , 𝑛 where 𝑇𝑖 is the 

duration of their remission measured from time of entry to study and 𝐶𝑖 is the time between their date 

of entry and the end of study. The likelihood function of cencored data for observation (𝑡𝑖, 𝛿𝑖) 𝑖 =
1,2, . . , 𝑛 can be calculated is defined as, 

 

𝐿(𝑡𝑖; 𝜆, 𝛿) = ∏[𝑓(𝑡𝑖; 𝜆)]𝛿𝑖[𝑆(𝑡𝑖; 𝜆)]1−𝛿𝑖

𝑛

𝑖=1

 

 

(4) 

The likelihood function of exponential distribution for observation (𝑡𝑖, 𝛿𝑖) 𝑖 = 1,2, … , 𝑛 can be 

calculated by 

𝐿(𝑡𝑖; 𝜆, 𝛿) = ∏[𝜆𝑒−𝜆𝑡𝑖]
𝛿𝑖

[𝑒−𝜆𝑡𝑖]
1−𝛿𝑖

𝑛

𝑖=1

 

 

= [𝜆𝛿1 ∙ 𝜆𝛿2 ⋯ 𝜆𝛿𝑛][𝑒−𝜆𝑡1 ∙ 𝑒−𝜆𝑡2 ⋯ 𝑒−𝜆𝑡𝑛] 
 

= 𝜆∑ 𝛿𝑖
𝑛
𝑖=1 𝑒−𝜆(∑ 𝑡𝑖

𝑛
𝑖=1 ) 

 

 

 

 

 

 

(5) 

 

then we find a natural logaritme of likelihood function above, 

𝑙 = ln 𝐿(𝑡𝑖; 𝜆, 𝛿) = (∑ 𝛿𝑖

𝑛

𝑖=1

 ) ln 𝜆 − (∑ 𝑡𝑖

𝑛

𝑖=1

) 𝜆 

by deriving 𝑙 to parameter 𝜆. we obtain,  

 
𝑑𝑙

𝑑𝜆
= 0 

𝑑

𝑑𝜆
[(∑ 𝛿𝑖

𝑛

𝑖=1

 ) ln 𝜆 − (∑ 𝑡𝑖

𝑛

𝑖=1

) 𝜆] = 0 

 

∑ 𝛿𝑖
𝑛
𝑖=1

𝜆
− ∑ 𝑡𝑖

𝑛

𝑖=1

= 0 

 

𝜆̂ =
∑ 𝛿𝑖

𝑛
𝑖=1

∑ 𝑡𝑖
𝑛
𝑖=1

 

 

 

 

 

 

 

 

 

 

 

 

(6) 

 

We get 𝜆̂ is a Maximum Likelihood Estimation of 𝜆. Later, composing 𝜆̂ into both of survival model 

and hazard function are 

𝑆̂𝑀𝐿(𝑡𝑖; 𝜆̂) = 𝑒−𝜆̂𝑡𝑖 = 𝑒
−(

∑ 𝛿𝑖
𝑛
𝑖=1

∑ 𝑡𝑖
𝑛
𝑖=1

)𝑡𝑖
 

ℎ̂𝑀𝐿(𝑡𝑖; 𝜆̂) = 𝜆̂ =
∑ 𝛿𝑖

𝑛
𝑖=1

∑ 𝑡𝑖
𝑛
𝑖=1

 

 

(7) 

 

(8) 

 

 𝑆̂𝑀𝐿(𝑡𝑖; 𝜆̂) and ℎ̂𝑀𝐿(𝑡𝑖; 𝜆̂) are Maximum Likelihood Estimation of survival model and hazard 

function. 

 

 

3. Formulating Posterior Distribution 
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In this case, gamma distribution is assigned as a conjugate prior distribution to exponential 

distribution with parameter λ where 0 < λ < ∞. The exponential distribution is a special form of 

gamma distribution. The gamma distribution is defined by 

 

𝛤(𝛼) = ∫ 𝜆𝛼−1𝑒−𝜆 𝑑𝜆
∞

0

 
(9) 

 

where 𝛼 > 0 and 0 < 𝜆 < ∞ 

Selecting gamma distribution with parameter (𝛼, 𝛽) as prior distribution for exponential distribution is 

based on closed form of gamma distribution. Let 𝑇 is a continous random varible of gamma 

distribution with parameter 𝛼 and  𝛽, we can describe the probability density function as below. 

 

𝑓(𝑡) =
𝛽𝛼

𝛤(𝛼)
𝑡𝛼−1𝑒−𝛽𝑡  ; 𝑡 > 0, 𝛼 > 0, 𝛽 > 0 

(10) 

 

The posterior distribution is a formula of likelihood function and prior distribution. It is defined by 

 

𝑓(𝜆⃓𝑡𝑖) =
𝑓(𝜆)𝑓(𝑡𝑖; 𝜆)

∫ 𝑓(𝜆)𝑓(𝑡𝑖; 𝜆) 𝑑𝜆
∞

0

 
(11) 

 

The density function 𝑓(𝜆⃓𝑡𝑖), 𝑓(𝜆) and 𝑓(𝑡𝑖; 𝜆) show the posterior distribution, the prior distribution 

and likelihood function, respectively. Let 𝑇~𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 (𝜆) and prior density function 

𝜆~𝐺𝑎𝑚𝑚𝑎(𝛼, 𝛽) then we can formulate the posterior distribution which can be stated as a 

conditional function of 𝜆 and knowing   𝑡 as, 

 

𝑓(𝜆⃓𝑡𝑖) =
𝑓(𝜆; 𝑡𝑖)

𝑓(𝑡𝑖)
 

 =
𝑓(𝜆)𝑓(𝑡𝑖; 𝜆)

∫ 𝑓(𝜆)𝑓(𝑡𝑖; 𝜆) 𝑑𝜆
∞

0

 

 =
(

𝛽𝛼

𝛤(𝛼)
𝜆𝛼−1𝑒−𝛽𝜆) (𝜆∑ 𝛿𝑖

𝑛
𝑖=1 𝑒−𝜆(∑ 𝑡𝑖

𝑛
𝑖=1 ))

∫ (
𝛽𝛼

𝛤(𝛼)
𝜆𝛼−1𝑒−𝛽𝜆) (𝜆∑ 𝛿𝑖

𝑛
𝑖=1 𝑒−𝜆(∑ 𝑡𝑖

𝑛
𝑖=1 )) 𝑑𝜆

∞

0

 

 =

𝛽𝛼

𝛤(𝛼)
𝜆∑ 𝛿𝑖+𝛼−1𝑛

𝑖=1 𝑒−𝜆(∑ 𝑡𝑖
𝑛
𝑖=1 +𝛽)

∫
𝛽𝛼

𝛤(𝛼)
𝜆∑ 𝛿𝑖+𝛼−1𝑛

𝑖=1 𝑒−𝜆(∑ 𝑡𝑖
𝑛
𝑖=1 +𝛽) 𝑑𝜆

∞

0

 

 =

𝛽𝛼

𝛤(𝛼)
𝜆∑ 𝛿𝑖+𝛼−1𝑛

𝑖=1 𝑒−𝜆(∑ 𝑡𝑖
𝑛
𝑖=1 +𝛽)

𝛽𝛼

𝛤(𝛼)
𝛤(∑ 𝛿𝑖 + 𝛼𝑛

𝑖=1 ) (
1

∑ 𝑡𝑖
𝑛
𝑖=1 + 𝛽

)
∑ 𝛿𝑖+𝛼𝑛

𝑖=1
 

 =
𝜆∑ 𝛿𝑖+𝛼−1𝑛

𝑖=1 𝑒−𝜆(∑ 𝑡𝑖
𝑛
𝑖=1 +𝛽)

𝛤(∑ 𝛿𝑖 + 𝛼𝑛
𝑖=1 ) (

1
∑ 𝑡𝑖

𝑛
𝑖=1 + 𝛽

)
∑ 𝛿𝑖+𝛼𝑛

𝑖=1
 

   =
(∑ 𝑡𝑖

𝑛
𝑖=1 + 𝛽)∑ 𝛿𝑖+𝛼𝑛

𝑖=1

𝛤(∑ 𝛿𝑖 + 𝛼𝑛
𝑖=1 )

𝜆∑ 𝛿𝑖+𝛼−1𝑛
𝑖=1 𝑒−𝜆(∑ 𝑡𝑖

𝑛
𝑖=1 +𝛽) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(12) 

 

From the result above we obtain the posterior distribution is a Gamma distribution or it can be 

expressed by 𝐺𝑎𝑚𝑚𝑎(∑ 𝛿𝑖 + 𝛼𝑛
𝑖=1 , ∑ 𝑡𝑖

𝑛
𝑖=1 + 𝛽) where 𝜆 is a variable and 𝑡𝑖 is sample. 
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4. Bayesian Linex Loss Function 

 
Bayesian Method is a well known estimation method in whole statistical methodology studies. There 

are three loss functions of the Bayes estimator. Linex is one of loss function in Bayesian estimation. 

The posterior expectation of the Linex loss function is according to Zellner in [3]. The Linex loss 

function is one of bayesian approaches. Using result of Zellner (1986) in [5], the parameter estimator 

of 𝜆 which is denoted by 𝜆̂𝑙𝑖𝑛 under Linex loss function is defined by, 

 

𝜆̂𝑙𝑖𝑛 = −
1

𝑐
ln[𝐸(𝑒−𝑐𝜆)] 

 

 

(13) 

We found the posterior formula in (12) that can be used to find a parameter estimator 𝜆̂𝐵𝐿 

under Bayes Linex loss function, 

 

𝐸[𝑒−𝑐𝜆] = ∫ 𝑒−𝑐𝜆𝑓(𝜆⃓𝑡𝑖) 𝑑𝜆
∞

0

 

 = ∫ 𝑒−𝑐𝜆
∞

0

[
(∑ 𝑡𝑖

𝑛
𝑖=1 + 𝛽)∑ 𝛿𝑖+𝛼𝑛

𝑖=1 𝜆
∑ 𝛿𝑖+𝛼−1𝑛

𝑖=1 𝑒−𝜆(∑ 𝑡𝑖
𝑛
𝑖=1 +𝛽)

𝛤(∑ 𝛿𝑖 + 𝛼𝑛
𝑖=1 )

]  𝑑𝜆 

=
(∑ 𝑡𝑖

𝑛
𝑖=1 + 𝛽)∑ 𝛿𝑖+𝛼𝑛

𝑖=1

𝛤(∑ 𝛿𝑖 + 𝛼𝑛
𝑖=1 )

∫ 𝜆∑ 𝛿𝑖+𝛼−1𝑛
𝑖=1 𝑒−𝜆(∑ 𝑡𝑖

𝑛
𝑖=1 +𝛽+𝑐)

∞

0

 𝑑𝜆 

 

=
(∑ 𝑡𝑖

𝑛
𝑖=1 + 𝛽)∑ 𝛿𝑖+𝛼𝑛

𝑖=1 𝛤(∑ 𝛿𝑖 + 𝛼𝑛
𝑖=1 )

(∑ 𝑡𝑖
𝑛
𝑖=1 + 𝛽 + 𝑐)∑ 𝛿𝑖+𝛼𝑛

𝑖=1 𝛤(∑ 𝛿𝑖 + 𝛼𝑛
𝑖=1 )

 

 

= (
∑ 𝑡𝑖

𝑛
𝑖=1 + 𝛽

∑ 𝑡𝑖
𝑛
𝑖=1 + 𝛽 + 𝑐

)

∑ 𝛿𝑖+𝛼𝑛
𝑖=1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(14) 

 

from (14) we get the parameter estimation under Linex loss function as following 

  

𝜆̂𝐵𝐿 = −
1

𝑐
ln[𝐸(𝑒−𝑐𝜆)] 

= −
1

𝑐
ln [(

∑ 𝑡𝑖
𝑛
𝑖=1 + 𝛽

∑ 𝑡𝑖
𝑛
𝑖=1 + 𝛽 + 𝑐

)

∑ 𝛿𝑖+𝛼𝑛
𝑖=1

] 

 

 

 

(15) 

 

Futhermore, the survival and hazard function under Linex loss function are expressed by equation 

(16) and (17), 

 

𝑆̂𝐵𝐿(𝑡𝑖; 𝜆̂) = 𝑒−𝜆̂𝑡𝑖 

 = 𝑒
−(−

1
𝑐

ln[(
∑ 𝑡𝑖

𝑛
𝑖=1 +𝛽

∑ 𝑡𝑖
𝑛
𝑖=1 +𝛽+𝑐

)

∑ 𝛿𝑖+𝛼𝑛
𝑖=1

])𝑡𝑖

 

 

 

 

(16) 

 

ℎ̂𝐵𝐿(𝑡𝑖; 𝜆̂) = 𝜆̂ 

 = −
1

𝑐
ln [

(∑ 𝑡𝑖
𝑛
𝑖=1 + 𝛽)∑ 𝛿𝑖+𝛼𝑛

𝑖=1

(∑ 𝑡𝑖
𝑛
𝑖=1 + 𝛽 + 𝑐)

∑ 𝛿𝑖+𝛼𝑛
𝑖=1

] 

 

 

 

(17) 
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5. Result  

 

There are many diseases around our life. Some of them are dangerous and making a high death risk 

like diabetes mellitous, cancer, stroke and heart attack. Researchers are interested in study about 

cancer. In the last decades, cancer patients are growing bigger in the world. This disease has suffered 

people in all ages. Science makes some contributions to detect the risk which is caused by the diseases 

especially in Mathematics and Statistics. Survival study is derived from both mathematics and 

statistics. It relates to Actuarial Science which has developed in some countries. The data is taken 

from R versi 3.3.0. It describes about patients of lung cancer which has an exponential distribution.  

The result of survival value under MLE and Bayes Linex is presented as below, 

 

Table 1. Calculation of Survival Probability under MLE and Bayes Linex Loss Function. 

 
The lenghth of Cencoring 

Time 

Survival Probability Estimation of Survival 

Probability under MLE 

Estimation of Survival 

Probability under 

Bayesian Linex 

1 

1 

2 

3 

4 

7 

8 

10 

11 

12 

13 

15 

16 

18 

19 

20 

21 

22 

24 

25 

27 

29 

30 

31 

33 

35 

36 

42 

44 

45 

48 

51 

52 

53 

54 

56 

59 

61 

63 

72 

73 

. 

. 

. 

 

0.991811898 

0.991811898 

0.983690841 

0.975636280 

0.967647670 

0.944072173 

0.936342013 

0.921071062 

0.913529238 

0.906049167 

0.898630344 

0.883974439 

0.876736366 

0.862437533 

0.855375806 

0.848371902 

0.841425346 

0.834535670 

0.820925094 

0.814203275 

0.800924304 

0.787861902 

0.781410809 

0.775012537 

0.762372734 

0.749939076 

0.743798498 

0.707996613 

0.696449783 

0.690747181 

0.673918010 

0.657498860 

0.652115192 

0.646775606 

0.641479742 

0.631017746 

0.615643806 

0.605603173 

0.595726294 

0.553236206 

0.548706251 

. 

. 

. 

0.992347739 

0.992347739 

0.984754035 

0.977218440 

0969740509 

0.947648307 

0.940396655 

0.926059399 

0.918972951 

0.911940730 

0.904962322 

0.891165298 

0.884345868 

0.870863161 

0.864199089 

0.857586012 

0.851023540 

0.844511285 

0.831635896 

0.825272001 

0.812689932 

0.800299690 

0.794175588 

0.788098348 

0.776083028 

0.764250893 

0.758402646 

0.724241065 

0.713199311 

0.707741724 

0.691618263 

0.675862120 

0.670690246 

0.665557949 

0.660464926 

0.650395501 

0.635578476 

0.625888469 

0.616346195 

0.575174574 

0.570773187 

. 

. 

. 

0.992343628 

0.992343628 

0.984745875 

0.977206294 

0.969724439 

0.947620826 

0.940365488 

0.926021035 

0.918931073 

0.911895395 

0.904913584 

0.891109920 

0.884287250 

0.870798222 

0.864131067 

0.857514958 

0.850949504 

0.844434318 

0.831553211 

0.825186530 

0.812599032 

0.800203545 

0.794076889 

0.787997140 

0.775976934 

0.764140085 

0.758289544 

0.724115058 

0.713069317 

0.707609793 

0.691480743 

0.675719335 

0.670545776 

0.665411828 

0.660317187 

0.650244626 

0.635423141 

0.625730318 

 0.616185350 

0.575003032 

0.570600595 

. 

. 

. 

999 0.000270947 0.000465751 0.00046575 
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The table 1 presents the survival probability of cancer patients after getting treatment under MLE and 

Bayesian Linex Loss function. Both of results give the value are greater than the real value but the 

estimation value under Bayesian Linex is closer to the survival value than the MLE’s. The result 

shows that the all values are inversely proportional with the time. The survival probability of patients 

is getting smaller and converges to zero after less 3 years later. It means that the effect of treatment 

will be fading by the time. Decreasing point of survival probability is around 10% in about 10 days of 

different range. The degenerate rate is associated to hazard function of survival study. The hazard 

value estimation under both MLE and Bayesian Linex Loss function is given in table 2 as following, 

 

Table 2. The Hazard Values of MLE and Bayes Linex Loss Function Estimation. 

 
Hazard Estimation of Hazard Value           

under MLE 

Estimation of Hazard Value      

under Bayesian Linex 

 

0.008221809 

 

0.007681689 

 

0.007685833 

   

 

The hazard value serves a failure rate in reliability. From table 2, the failure rate of the real value, 

using MLE and Bayesian Linex are 0.8221809%, 0.7681689% and 0.7685833%, respectively. It 

means the Bayesian’s is nearer to the real value than MLE’s. Calculation of Mean Squared Error 

(MSE) is one way to find the best method by viewing the smallest MSE of both results. Those are 

shown by table 3 as below,  

 

TABLE 3. MSE Values of Survival and Hazard under MLE and Bayes Linex Loss Function. 

 

MSE Hazard Survival 

 

MLE 

 

 

2.91728E-07 

 

0.000309004 

Bayesian Linex Loss Function 

 

2.8727E-07 0.000304131 

 

The result shows that MSE value of Hazard and survival under Bayes Linex Loss Function is less than 

MSE value of Hazard and survival under MLE.  

 

Graph 1. The Comparison Plot of The Real Survival Probability and Using MLE. 
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Graph 2. The Comparison Plot of The Real Survival Probability and Using Bayesian Linex. 

 

 
 

Although, both of graph 1 and graph 2 show that they have a slightly different value with the real 

value of survival probability, the line of graph 2 has a more rapid distant between the real’s and 

Bayesian’s.  

 

6. Conclusion 

 

To sum up, the research tells some points. First, the cancer is a high risk disease because the survival 

opportunity is decreasing rapidly by the time. It is not longer than 3 years the survival probability 

limits to zero. It means the cancer is almost impossible to be reaped. Second, the hazard rate and 

length of post treatment observation have a particular role to survival value.  Those are inversely 

proportional with the survival probability. The last, the MSE shows that the Bayesian Linex Loss 

function is better than MLE. 
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