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Abstract. Code-based Cryptography (CBC) is a powerful and promising alternative for
quantum resistant cryptography. Indeed, together with lattice-based cryptography, multivariate
cryptography and hash-based cryptography are the principal available techniques for post-
quantum cryptography. CBC was first introduced by McEliece where he designed one of the
most efficient Public-Key encryption schemes with exceptionally strong security guarantees and
other desirable properties that still resist to attacks based on Quantum Fourier Transform and
Amplitude Amplification.

The original proposal, which remains unbroken, was based on binary Goppa codes. Later,
several families of codes have been proposed in order to reduce the key size. Some of these
alternatives have already been broken.

One of the main requirements of a code-based cryptosystem is having high performance
t-bounded decoding algorithms which is achieved in the case the code has a t-error-correcting
pair (ECP). Indeed, those McEliece schemes that use GRS codes, BCH, Goppa and algebraic
geometry codes are in fact using an error-correcting pair as a secret key. That is, the security
of these Public-Key Cryptosystems is not only based on the inherent intractability of bounded
distance decoding but also on the assumption that it is difficult to retrieve efficiently an error-
correcting pair.

In this paper, the class of codes with a t-ECP is proposed for the McEliece cryptosystem.
Moreover, we study the hardness of distinguishing arbitrary codes from those having a t-error
correcting pair.

1. Introduction
In 1978 [17] McEliece presented the first PKC system based on the theory of error-correcting
codes. In 1986 Niederreiter [19] presented a dual version of McEliece cryptosystem which is
equivalent in terms of security. Their main advantages are its fast encryption and decryption
schemes. It is an interesting candidate for post-quantum cryptography.

2. Code-based cryptography
A linear code C is a subspace of Fn

q . The weight of x ∈ Fn
q is the number of nonzero entries of x

and is denoted by wt(x). The (Hamming) distance between x, y ∈ Fq is the number of entries
where x and y differ and is denoted by d(x,y). The minimum distance of C is the minimal
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value of d(x,y) where x, y ∈ C and x 6= y. Since C is linear it is equal to the minimum weight
of C, that is the minimal value of wt(x) where x ∈ C and x 6= 0.

The parameters of the code are denoted by [n, k, d], where n is its length, k its dimension and
d its minimum distance. The (information) rate of C is defined by R = k/n.

Let C be an Fq-linear code of length n and dimension k. A generator matrix G of C is a
k × n matrix with entries in Fq such that its rows are a basis of C. A parity check matrix H is
(n− k)× n matrix with entries in Fq such that cHT = 0 if and only if c ∈ C.

The problem of minimum distance decoding has as input (G,y), where G is a generator
matrix of a code C over Fq of parameters [n, k, d] and y ∈ Fn

q is a received word. The output is
a codeword c ∈ C of minimal distance to y. One can phrase the problem equivalently in terms
of a parity check matrix H of the code. Then the input is (H, s), where s ∈ Fn−k

q . The output

is an e ∈ Fn
q of minimal weight such that eHT = s. The relation of the two versions is given by

s = yHT the syndrome and e = y − c the error vector of the received word y.
The security of code-based cryptosystems is based on the hardness of decoding up to half

the minimum distance. The minimum distance decoding problem was shown by Berlekamp-
McEliece-Van Tilborg [2] to be NP-hard. The status of the hardness of decoding up to half the
minimum distance is an open problem. McEliece proposed to use binary Goppa codes for his
PKC system.

In the McEliece PKC system a collection K of generator k × n matrices is chosen for which
an efficient decoding algorithm is available that corrects all patterns of t errors. The encryption
map

EG : P → C

for a given key G ∈ K is defined by EG(m, e) = mG+ e. An adversary A is a map from C ×K
to P. This adversary is successful for (x,G) ∈ Ω if A(EG(x), G) = x.

Let C be a class of codes such that every code C in C has an efficient decoding algorithm
correcting all patterns of t errors. Let G ∈ Fk×n

q be a generator matrix of C. In order to mask
the origin of G, take a k× k invertible matrix S over Fq and an n×n permutation or monomial
matrix Π. Then for the McEliece PKC the matrices G, S and Π are kept secret while G′ = SGΠ
is made public. Furthermore the (trapdoor) one-way function of this cryptosystem is usually
presented as follows:

x = (m, e) 7→ y = mG′ + e,

where m ∈ Fk
q is the plaintext and e ∈ Fn

q is a random error vector with Hamming weight at
most t.

3. Error-correcting pairs
From now on the dimension of a linear code C will be denoted by k(C) and its minimum distance
by d(C). Given two elements a and b in Fn

q , the star product is defined by coordinatewise
multiplication, that is a ∗b = (a1b1, . . . , anbn) while the standard inner multiplication is defined
by a · b =

∑n
i=1 aibi.

Let A, B and C be subspaces of Fn
q . Then A ∗ B is the subspace generated by {a ∗ b | a ∈

A and b ∈ B}. And C⊥ = {x|x ·c = 0 for all c ∈ C} is the dual code of C. Furthermore A ⊥ B
means a · b = 0 for all a ∈ A and b ∈ B.

Definition 3.1. Let C be a linear code in Fn
q . The pair (A,B) of linear codes over Fqm of length

n is called a t-error-correcting pair (ECP) over Fqm for C if the following properties hold:

E.1 (A ∗B) ⊥ C,

E.2 k(A) > t,

E.3 d(B⊥) > t,
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E.4 d(A) + d(C) > n.

Remark 3.2. In the above definition A and B are Fqm-linear codes and C is an Fq-linear
code. So by k(A) the dimension of A over Fqm is meant. And d(B⊥), d(A) and d(C) mean the
minimum distances of B⊥ and A over Fqm and of C over Fq.

Remark 3.3. The notion of an error-correcting pair for a linear code was introduced in 1988
by Pellikaan [22] and independently by Kötter in [11, 12] in 1992. It is shown that a linear code
in Fn

q with a t-error-correcting pair has a decoding algorithm which corrects up to t errors with

complexity O(n3).

Remark 3.4. Note that if (A,B) is a pair of codes that satisfies Conditions E.1, E.2, E.3 and
the following two conditions:

E.5 d(A⊥) > 1, that means A is a non-degenerate code,

E.6 d(A) + 2t > n,

then d(C) ≥ 2t+ 1 and (A,B) is a t-ECP for C by [23, Corollary 3.4].

In the following we consider eight collections of pairs.

Example 3.5. Let a be an n-tuple of mutually distinct elements of Fq and b be an n-tuple of
nonzero elements of Fq. Then the generalized Reed-Solomon code GRSk(a,b) is defined by

GRSk(a,b) = {(f(a1)b1, . . . , f(an)bn) | f(X) ∈ Fq[X] and deg(f(X)) < k} .

If k ≤ n ≤ q, then GRSk(a,b) is an [n, k, n− k + 1] code. Furthermore the dual of a GRS code
is again a GRS code, in particular GRSk(a,b)⊥ = GRSn−k(a,b⊥) for some b⊥ that is explicitly
known.

Let A = GRSt+1(a,u), B = GRSt(a,v) and C = GRS2t(a,u ∗ v)⊥. Then (A,B) is a t-ECP
for C. Conversely let C = GRSk(a,b), then A = GRSt+1(a,b

⊥) and B = GRSt(a,1) is a t-ECP
for C where t =

⌊
n−k
2

⌋
.

So GRS codes are the prime examples of codes that have a t-error-correcting pair. GRS codes
are not suited for a coded-based PKC by the attack of Sidelnikov-Shestakov [26].

Example 3.6. Let C be a subcode of a code D that has (A,B) as a t-ECP. Then condition
(E.1) holds for (A,B) with respect to D. So a ∗ b · d = 0 for all d in D. Hence a ∗ b · c = 0
for all c in C, since C ⊆ D. Conditions (E.2), (E.3) and (E.4) hold. Therefore (A,B) is also a
t-ECP for C.

In particular, let C be a subcode of the code GRSn−2t(a,b). This GRS code has a t-error-
correcting pair by Example 3.5 which is also a t-ECP for C.

The class of subcodes of GRS codes was proposed by Berger and Loidreau in [1] for code-based
PKC to resist precisely the Sidelnikov-Shestakov attack. But for certain parameter choices this
proposal is also not secure as shown by Márquez et al. [14].

Example 3.7. The Goppa code Γ(L, g(X)) associated to a Goppa polynomial g(X) of degree r
and an n-tuple L of points in Fqm can be viewed as an alternant code, that is a subfield subcode
of a GRS code of codimension r. Therefore such a code has an br/2c-error-correcting pair. If
the Goppa polynomial is square free of degree r in an extension of F2, then the binary Goppa
code has an r-ECP, since Γ(L, g(X)) = Γ(L, g(X)2).

Goppa codes were proposed by McEliece [17] for his PKC system. Sidelnikov-Shestakov made
a claim [26] that their method for GRS codes could be extended to attack Goppa codes as well,
but this had never been substantiated by a paper in the public domain. A binary Goppa code
using elements in the extension F2m and with a square free Goppa polynomial of degree t over
F2m has parameters [n, k, d] with n ≤ 2m, k ≥ n−mt and d ≥ 2t+ 1. For these codes efficient
decoding algorithms are known that decode all patterns with t errors.
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A binary Goppa code with parameters [1024, 524, 101] as proposed by McEliece is no longer
secure with nowadays computing power due to recent improvements in the decoding algorithms.

Example 3.8. Algebraic geometry (AG) codes were introduced in 1977 by V.D. Goppa. Recall
that GRS codes can be seen as the class of AG codes on the projective line, that is the algebraic
curve of genus zero. We refer the interested reader to [24, 25].

Let X be an algebraic curve defined over Fq with genus g. By an algebraic curve we mean
a curve that is absolutely irreducible, nonsingular and projective. Let P be an n-tuple of Fq-
rational points on X and let E be a divisor of X with disjoint support from P of degree e.
Then the algebraic geometry code CL(X ,P, E) is the image of the Riemann-Roch space L(E)
of rational functions with prescribed behavior of zeros and poles at E under the evaluation
map evP . If e < n, then the dimension of the code CL(X ,P, E) is at least e + 1 − g and its
minimum distance is at least n − e. If e > 2g − 2, then its dimension is e + 1 − g. The dual
code CL(X ,P, E)⊥ is again AG. If e > 2g − 2, then the dimension of the code CL(X ,P, E)⊥ is
at least n − e − 1 + g and its minimum distance is at least d∗ = e − 2g + 2. If e < n, then its
dimension is n− e− 1 + g.

If A = CL(X ,P, E) and B = CL(X ,P, F ), then A ∗ B ⊆ CL(X ,P, E + F ). So there are
abundant ways to construct error-correcting pairs of an AG code. An AG code on a curve of
genus g with designed minimum distance d∗ has a t-ECP over Fq with t = b(d∗ − 1− g)/2c by
[21, Theorem 1] and [22, Theorem 3.3]. If m is sufficiently large, then there exists a t-ECP over
Fqm with t = b(d∗ − 1)/2c by [23, Proposition 4.2].

Algebraic geometry codes were proposed by Niederreiter [19] and Janwa-Moreno [10] for code-
based PKC systems. This system was broken for low genus zero [26], one and two [9, 18]. For
arbitrary genus it was shown by Márquez et al. [13, 15] that these codes are not secure for rates
R in the intervals [γ, 12 − γ], [12 + γ, 1− γ], [12 − γ, 1− 3γ] and [3γ, 12 + γ], where R = k/n is the
information rate and γ = g/n the relative genus. Recently Couvreur et al. [6] showed that it is
not necessary to retrieve the triple (X ,P, E) and the Riemann-Roch space L(E) but that one
can stay in the realm of Fn

q and its subspaces in order to find an error-correcting pair.

Example 3.9. Geometric Goppa codes are subfield subcodes of algebraic geometry codes
generalizing the classical Goppa codes that are subfield subcodes of GRS codes. Geometric
Goppa codes were proposed by Janwa-Moreno [10]. Couvreur et al. [5] showed that certain
geometric Goppa codes are not secure for a PKC system.

Example 3.10. Let (A,B) be a pair of codes with parameters [n, t+1, n− t] and [n, t, n− t+1],
respectively, and C = (A ∗B)⊥, then the minimum distance of C is at least 2t+ 1 and (A,B) is
a t-error-correcting pair for C by [23, Corollary 3.4]. The dimension of A ∗B is at most t(t+ 1).
So the dimension of C is at least n − t(t + 1). In Appendix A it is shown that this is almost
always equal to n− t(t+ 1) for random choices of A and B.

If q is considerably larger than n, then a random linear code is MDS with very high probability.
So taking random codes A and B of length n and dimensions t+ 1 and t, respectively, this gives
a very large class of codes for the McEliece PKC. However with large field the key size becomes
larger and recall that the main obstacle for coded-based cryptosystems was the key size.

4. The ECP one-way function
Let P(n, t, q) be the collection of pairs (A,B) such that there exist a positive integer m and a
pair (A,B) of Fqm-linear codes of length n, that satisfy Conditions E.2, E.3, E.5 and E.6. Let
C be the Fq-linear code of length n that is the subfield subcode that has all elements of A ∗ B
as parity checks. So

C = Fn
q ∩ (A ∗B)⊥.

Then the minimum distance of C is at least 2t+ 1 and (A,B) is a t-ECP for C as was noted in
Remark 3.4. Let F(n, t, q) be the collection of Fq-linear codes of length n and minimum distance
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d ≥ 2t+ 1. Consider the following map

ϕ(n,t,q) : P(n, t, q) −→ F(n, t, q)
(A,B) 7−→ C.

The question is whether this map is a one-way function.
Let U and V be generator matrices of the codes A and B, with rows denoted by ui and

vi, respectively. Let U ∗ V be the matrix with the rows ui ∗ vj ordered lexicographically. Let
(U ∗V )(ql) be the matrix with entries the ql-power of the entries of U ∗V . Let W be the reduced
row echelon form (with the zero rows deleted) of the matrix with rows all the rows of (U ∗V )(ql)
for l = 0, 1 . . . ,m− 1. Then W has entries in Fq and is a parity check matrix of C. In this way

(U, V ) 7−→ W

is an implementation of the map ϕ(n,t,q).
If the map ϕ(n,t,q) is indeed difficult to invert, then we will call it the ECP one-way function

and the code C with parity check matrix W might be used as a public-key in a coding based PKC.
Otherwise it would mean that the PKC based on codes that can be decoded by error-correcting
pairs is not secure.

Remark 4.1. Note that uΠ ∗ vΠ = (u ∗ v)Π for every permutation or monomial matrix Π.
Thus, if (A,B) is a t-ECP for C, then (AΠ, BΠ) is a t-ECP for CΠ.

Furthermore, if S and T are invertible matrices of the correct sizes to be multiplied on the
left of the matrices U and V , respectively, then U ∗ V generates the same code as (SU) ∗ (TV )
since (SU) ∗v = S(U ∗v) and u ∗ (TV ) = T (u ∗V ) for all vectors u and v. Therefore the usual
masking SHP of a parity check matrix H by means of an invertible matrix S and a permutation
matrix P is already incorporated in the choice of the pair of generator matrices (U, V ).

5. Distinguishing a code with an ECP
Let K be a collection of generator matrices of codes that have a t-error-correcting pair and that
is used for a coded-based PKC system. In this section we address assumption A.2 whether we
can distinguish arbitrary codes from those coming from K.

Let C be a k dimensional subspace of Fn
q with basis g1, . . . ,gk which represents the rows of

the generator matrix G ∈ Fk×n
q . We denote by S2(C) the second symmetric power of C, or

equivalently the symmetrized tensor product of C with itself. If xi = gi, then S2(C) has basis

{xixj | 1 ≤ i ≤ j ≤ n} and dimension
(
k+1
2

)
. Furthermore we denote C ∗ C by C(2) the square

of C, that is the linear subspace in Fn
q generated by {a ∗ b|a,b ∈ C}. See [3, §4 Definition 6]

and [4, 14]. Now, following the same scheme as in [13], we consider the linear map

σ : S2(C) −→ C(2),

where the element xixj is mapped to gi ∗ gj . The kernel of this map will be denoted by K2(C).
Then K2(C) is the solution space of the following set of equations:∑

1≤i≤i′≤k
gijgi′jXii′ = 0, 1 ≤ j ≤ n.

There is no loss of generality in assuming G to be systematic at the first k position, making
a suitable permutation of columns and applying Gaussian elimination, if necessary. Then
G =

(
Ik P

)
where Ik is the k × k identity matrix and P is an k × (n − k) matrix formed

by the last n − k columns of G. Now H =
(
P T −In−k

)
is a parity check matrix of C, or

equivalently H is a generator matrix of the [n, n− k] code D = C⊥.
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In [8, III] and [20, Ch. 10] a system LP associated to the matrix P of k linear equations

involving the
(
n−k
2

)
variables Zjl, with k + 1 ≤ j < l ≤ n, is defined as

LP =


n−1∑

j=k+1

n∑
j′>j

pijpij′Zjj′ = 0 | 1 ≤ i ≤ k.


This system differs from the system of equations obtained for the kernel K2(C) in

interchanging indices i and j and the strict inequality j < j′ in the summation, instead of
i ≤ i′. Denote the kernel of LP , that is the space of all solutions of LP , by K(LP ).

Proposition 5.1.
dimK(LP ) = dimK2(D)

Proof. Let M be the
(
k+1
2

)
× n matrix with entries

(
gijgi′j

)
1≤i≤i′≤k
1≤j≤n

. Then a basis of K2(C)

can be read of directly as the kernel of M . Note also that the dimension of C(2) is equal to the
rank of M . Furthermore, since C(2) is the image of the linear map σ, by the first isomorphism
theorem we get:

dimK2(C) + dimC(2) = dimS2(C) =

(
k + 1

2

)
.

Let hi be the i-th row of the parity check matrix H, ei be the i-th vector in the canonical
basis of Fn−k

q and qi be the i-th row of the matrix P T . Then qij = pj,i+k and hi = (qi| − ei).
Therefore

hj ∗ hj′ =

{ (
qj ∗ qj ej

)
if j = j′,(

qj ∗ qj′ 0
)

if j < j′.

Let M1 be the k ×
(
n−k
2

)
matrix with entries

(
pijpij′

)
1≤i≤k
k<j<j′≤n

, then

dimK(LP ) =

(
n− k

2

)
− rank(M1)

Now let M2 be the
(
n−k+1

2

)
× n matrix with entries

(
hijhi′j

)
1≤i≤i′≤n−k
1≤j≤n

. Then

dimD(2) = rank(M2) = n− k + rank(M1)

Therefore

dimK(LP ) =

(
n− k

2

)
− rank(M1)

=

(
n− k

2

)
+ n− k − dimD(2)

= dimK2(D)

The dual statement of Proposition 5.1 gives: dimK(LPT ) = dimK2(C).
For every [n, k] code C over Fq the following inequality holds:

dimC(2) ≤ min{n,
(
k+1
2

)
}.

However if the entries of the matrix P are taken independently and identically distributed, then
the inequality holds with equality with high probability what is actually proved in the next
proposition.
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Proposition 5.2. Let C be an [n, k] code with n >
(
k+1
2

)
chosen at random. Then

Pr

(
dim(C

(2)
random) =

(
k + 1

2

))
= o(1)

Proof. Let C be a linear code with parameters [n, k] over Fq with n >
(
k+1
2

)
.

We have seen in the proof of Proposition 5.1, with the role of C and D = C⊥ interchanged
that the linear system LPT associated with C consists of n−k linear equations and

(
k
2

)
unknowns.

In case n − k >
(
k
2

)
or equivalently n >

(
k+1
2

)
Faugère et al. [8] proved that the dimension of

the solution space of LPT is 0 with high probability. Therefore under the same hypothesis we

have that the dimension of C
(2)
random is

(
k+1
2

)
with high probability.

Remark 5.1. See [4, Theorem 2.3] for an improved version of Proposition 5.2.

Example 5.2. Let C be a GRS code with parameters [n, k], take for instance C = GRSk(a,b)
where a is an n-tuple of mutually distinct elements of Fq and b is an n-tuple of nonzero elements

of Fq. Then C(2) is the code GRS2k−1(a,b ∗ b) if 2k − 1 ≤ n and Fn
q otherwise. Hence

dimC(2) = min{2k − 1, n}. Therefore

dimK2(C) =

(
k + 1

2

)
− (2k − 1) =

(
k − 1

2

)
if 2k − 1 ≤ n.

Example 5.3. Let C be a k-dimensional subcode of the code GRSl(a,b). Then C(2) is a
subcode of the code GRS2l−1(a,b ∗ b), if 2l − 1 ≤ n. Thus

dimC(2) ≤ min{2l − 1, n}.

Moreover if 4l − 3k − 1 < q and 2l − 1 ≤
(
k+1
2

)
, then it was shown in [14] that C(2) is equal to

GRS2l−1(a,b ∗ b) with high probability so, under this hypothesis,

Pr
(

dimC(2) = 2l − 1
)

= 1− o(1).

The dual code D = C⊥ contains the code GRSl(a,b)⊥ = GRSn−l(a,b
⊥). That is, D(2) contains

the square of GRSn−l(a,b
⊥) which is equal to GRS2n−2l−1(a,b

⊥ ∗ b⊥) if 2n − 2l − 1 ≤ n, or
equivalently if n ≤ 2l+ 1. Recall that the star product of the rows of a generator matrix of any
linear code gives a generating set for its square code, that is the square of any [n, s] linear code

is generated by
(
s+1
2

)
elements. In particular D(2) is generated by

(
n−k+1

2

)
elements but since

GRS2n−2l−1(a,b
⊥ ∗b⊥) ⊆ D(2) there are at least

(
n−l+1

2

)
− (2n− 2l+ 1) dependent elements of

this generating set. Thus

dimD(2) ≤
(
n− k + 1

2

)
−
(
n− l + 1

2

)
+ 2n− 2l − 1 =

(
n− k + 1

2

)
−
(
n− l − 1

2

)
.

Example 5.4. The problem of distinguishing Goppa, alternant and random codes from each
other was studied by Faugère et al. in [8]. Their experimental results give rise to a conjecture
on the dimension of K(LP ) for Goppa and alternant codes of high rate.

Example 5.5. Let C = CL(X ,P, E) where X is an algebraic curve over Fq of genus g, P is
an n-tuple of mutually distinct Fq-rational points of X and E is a divisor of X with disjoint

support from P of degree e. Then C(2) ⊆ CL(X ,P, 2E).
Assume moreover that 2g−2 < e < n/2. Then C has dimension k = e+1−g and CL(X ,P, 2E)
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has dimension 2e+ 1− g = k + e. Hence dimC(2) ≤ k + e.
Let G be a generator matrix of an algebraic geometry code C. Take the columns of G as
homogeneous coordinates of points in Pe−g, this gives a projective system Q = (Q1, . . . , Qn) of
points in the projective space Pe−g(Fq). Since e > 2g there exists an embedding of the curve X
in Pe−g of degree e

ϕE : X −→ Pe−g

P 7−→ ϕE(P ) = (f0(P ), . . . , fe−g(P ))

where {f0, . . . , fe−g} is a basis of L(E) such that Q = ϕE(P) lies on the curve Y = ϕE(X ).
The space I2(Q) of quadratic polynomials that vanish on Q can be identified with K2(C).
Furthermore if 2g + 2 ≤ e < 1

2n, then I2(Y) = I2(Q) and I(Y), the vanishing ideal of Y, is
generated by I2(Q). Now

dimK2(C) =

(
k + 1

2

)
− dimC(2) ≥

(
k

2

)
− e.

Therefore Y is given as the intersection of at least
(
k
2

)
− e quadrics in Pe−g. For more details we

refer the reader to [13, 15].

Example 5.6. Let t(t + 1) < n. Let (A,B) be a pair of random codes of dimension t + 1
and t, respectively. Take C = (A ∗ B)⊥ as in Example 3.10. Let D = C⊥ = A ∗ B. Then
D(2) = A(2) ∗B(2). Hence

dimD(2) ≤
(
t+ 2

2

)(
t+ 1

2

)
which is about half the expected value

(
t(t+1)

2

)
in case

(
t(t+1)

2

)
< n by Proposition 5.2, since D

has dimension t(t+ 1) with high probability by Appendix A.
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Appendix A. The dimension of A ∗B
Let A and B be two linear codes over Fq with parameters [n, s] and [n, t], generated by the set
{a1, . . . ,as} and {b1, . . . ,bt} of vectors in Fn

q , respectively. Let M be an st× n matrix over Fq

whose rows consist on the vectors ai ∗ bj = (ai,1bj,1, . . . , ai,nbj,n) ∈ Fn
q with i ∈ {1, . . . , s} and

j ∈ {1, . . . , t} ordered lexicographically. Then the rows of M form a generating set of the code
A ∗B.

Indeed M is a block-matrix consisting of s blocks Mi = (ai ∗ bj)1≤j≤t with i ∈ {1, . . . , s} of

size t× n. We define the support of a codeword c = (c1, . . . , cn) by supp(c) = {i | ci 6= 0}. Note
that if i 6∈ supp(aj) then the i-th column of Mj consists of zeros.

In the following lines, assuming that st < n we will prove that M has full rank with high
probability. We proceed by a similar procedure as in [8, VI Theorem 2] where it is proved that
the solution space of the linear system associated to an arbitrary random linear code is zero
with high probability.

Let E1 = supp(a1). Suppose |E1| ≥ t. Let F1 be a subset of E1 with cardinality t. To simplify
notation and without loss of generality, we can always assume that F1 corresponds to the first t
elements in a1, by permuting the elements if necessary. Let M (1) be a square submatrix of M1

formed by its first t columns, i.e.

M (1) = (a1,jbi,j)j∈F1
1≤i≤t

∈ Ft×t
q
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Now we define by induction Ei := supp(ai) \ Fi−1 and the subset Fi as the first t elements
of the subset, assuming that |Ei| ≥ t. The square matrix M (i) ∈ Ft×t

q is obtained from Mi by
taking the Fi-indexed columns, for i ∈ {1, . . . , s}. Then clearly the following Lemma holds.

Lemma Appendix A.1. If |Ei| ≥ t for all i ∈ {1, . . . , s} then

rank(M) ≥
s∑

i=1

rank(M (i)).

Lemma Appendix A.2. If |Ei| ≥ t for all i = 1, . . . , s then

Pr

(
s∑

i=1

d(M (i)) ≥ u

)
≤ Ksq

−u2

s

where d(M (i)) = t− rank(M (i)) for i = 1, . . . , s and K is a constant depending only on q.

Proof. See [8, Lemma 5].

Lemma Appendix A.3. Let ui = n− (i− 1)t with i = {1, . . . , s}, then

Pr (|Ei| < t, | |E1| ≥ t, . . . , |Ei−1| ≥ t) ≤ e
−2( q−1

q ui−t+1)
2

ui

Proof. See [7, Lemma 6] and [8].

Theorem Appendix A.4. Assume that st < n. Then for any function w(x) tending to infinity
as x goes to infinity we have

Pr (D ≥ w(t)) = o(1),

where D = st− rank(M).

Proof. Note that if |Ei| ≥ t for i ∈ {1, . . . , s} then D ≤
∑s

i=1 d(M (i)).

Let S1 be the event
∑s

i=1 d(M (i)) ≥ w(t) then using Lemma Appendix A.2 we have that
Pr(S1) = o(1). And let S2 be the event of having at least one Ei with i ∈ {1, . . . , s} such that
|Ei| < t. Then the probability of the complement of event S2 is given by

Pr
(
S2
)

= Pr

(
s⋂

i=1

|Ei| ≥ t

)
=

s∏
i=1

Pr (|E1| ≥ t, . . . , |Ei| ≥ t) = 1− o(1)

by Lemma Appendix A.3. Then we deduce that the sought probability is

Pr (D ≥ w(t)) ≤ Pr (S1 ∪ S2) ≤ Pr (S1) + Pr (S2) = o(1).


