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Abstract. In this paper, we discuss the reduction of unstable systems. Suppose we have a
large-scale unstable system. The reduction of such systems are done in order to obtain a simpler
model that has a similar behavior with the original model. In reality, a higher order model is
not preferred because the computation takes more time. Thus we need a method to reduce the
order of a model that is known as model reduction. Model reduction of a system is the method
of approximation of a system with a lower order but the dynamic behavior is equal or almost
equal to the original model. In this paper, we discuss model reduction of unstable systems.
Finally this method is applied to shallow water equation that describes the flow of water in
rivers: we obtain a procedure for model reduction of unstable systems and the reduced model
of shallow water equations.

1. Introduction
Studying systems’ behavior can be done through mathematical model. If we want to construct
a model that is close to the real phenomenon, we need a large number of variables. As a
consequence, the mathematical model has many state variables. Existing systems in the universe
often has a big order. On the other hand, this affects the computational time to simulate the
model, due to the huge number of variables in the system. Hence, we need a method to simplify
the order of a system.

There are many methods in the literature for model order reduction, such as balanced
truncation, modal analysis, krylov method, Hankel norm approximation, singular value
decomposition [1, 2, 3]. The application of balanced truncation methods to heat conduction
distribution has been discussed in [4, 5]. Those methods are suitable for stable, controllable
and observable systems. However, in reality, there are many unstable systems. Thus we need
to develop a model reduction method for unstable systems. In this paper, we discuss a model
reduction procedure for unstable systems using balanced truncation method. In the model
order reduction of an unstable system, first the system is decomposed into stable subsystem and
unstable subsystems using decomposition algorithms. Then we reduce the stable subsystem by
using balanced truncation method, i.e. constructing a balanced system, partition the systems
and truncating the least controllable or least observable state. Finally, we add the unstable
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system into the reduced stable subsystems. Then, we apply the model reduction of unstable
systems to shallow water equations.

The paper is structured as follows. Section 2 discusses the shallow water equations that will
be reduced later. Then Section 3 discretizes the original model into a discrete-time system. In
Section 4, we discuss the model reduction of unstable systems and its application to shallow
water equations.

2. Shallow Water Equations
In this section, we discuss the shallow water equation that describes the flow of water in rivers
[6]:

∂h

∂t
+D

∂v

∂x
= 0 (1)

∂v

∂t
+ g

∂h

∂x
+ Cfu = 0 (2)

with initial and boundary conditions:

h(x, 0) = 1, v(x, 0) = 0, h(0, t) = ψb(t), v(L, t) = vN (t) (3)

where h(x, t) is the water level above the reference plane at position x and time t, v(x, t) is the
average current velocity at position x and time t, t is the time variable, x is the position along
the river, D is the water depth, g is the gravitational acceleration and c is a friction constant.

3. Discretization
In this section, we discretize the Shallow Water Equation so that we can obtain a discrete-
time system that is suitable for model reduction. We use implicit scheme called Preissman
discretization [7] as follows:
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then, from equations (1) and (2), we obtain
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Using the initial and boundary condition (3) and generate terms (6) and (7) for i = 0 to N = 5,
then, the following values for the parameters are assumed

L = 30km,D = 10m,Cf = 0.0002,∆t = 10, θ = 0.3, g = 9.8m/s2
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Thus, we can write the equations (6) and (7) in matrix notation as follows

A1xk+1 = A2xk +Buk (8)

xk+1 = A−11 A2xk +A−11 B1uk (9)

The above system is a discrete-time linear-time-invariant system

xk+1 = Axk +Buk

where A = A−11 A2 and B = A−11 B1. By using the parameters described above, those matrices
are given by:

A =



0.8465 0 0 0 0 0 0 0 0 0 0 0
0.0311 0.9980 −0.0653 −0.0007 0.0653 0.0020 −0.0654 −0.0033 0.0655 0.0046 −0.0327 0.9972

0 0 1.0003 0.0333 −0.0013 −0.0666 0.0026 0.0667 −0.0039 −0.0668 0.0023 −0.0231
0 0 0.0327 0.9983 −0.0653 −0.0013 0.0654 0.0026 −0.0654 −0.0039 0.0327 −0.9970
0 0 0 0 1.0003 0.0333 −0.0013 −0.0666 0.0026 0.0667 −0.0016 0.0032
0 0 0 0 0.0327 0.9983 −0.0653 −0.0013 0.0654 0.0026 −0.0327 0.9968
0 0 0 0 0 0 1.0003 0.0333 −0.0013 −0.0666 0.0010 0.0167
0 0 0 0 0 0 0.0327 0.9983 −0.0653 −0.0013 0.0327 −0.9969
0 0 0 0 0 0 0 0 1.0003 0.0333 −0.0003 −0.0367
0 0 0 0 0 0 0 0 0.0327 0.9983 −0.0327 0.9974
0 0 0 0 0 0 0 0 0 0 1.0000 0.0233
0 0 0 0 0 0 0 0 0 0 0 0


(10)

B =



0
0
0
0
0
0
0
0

0.0005
0.0500
−0.0005
1.0000


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(11)

then, we construct a measurement equation at time k, as follows

yk = Ckxk (12)

where
C =

(
0 1 0 0 0 0 0 0 0 0 0 0

)
D = 0 (13)

Thus, we have system G = (A,B,C,D) as the original system in the model order reduction.
The properties of the preceding system are unstable, uncontrollable and unobservable. In the
next section, we discuss a model reduction method for such unstable systems.

4. Model Reduction of Unstable Systems
In this section, we discuss model reduction of unstable systems and its applications to shallow
water equations. The steps in model order reduction of unstable systems are as follows. First,
we decompose the original system into stable and unstable subsystems (Section 4.1). Then,
we reduce the stable subsystem using balanced truncation method (Section 4.2). Finally, we
combine the reduced stable subsystem and the unstable subsystem (Section 4.3).
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4.1. Unstable System Decomposition
In this section, the unstable system G is decomposed into stable subsystem and unstable
subsystem using a decomposition algorithm [8, 9]. The decomposition algorithm consists of
two steps:

Step 1 Transform the system G using a unitary matrix U in block diagonal upper Schur form
[10]. Thus, in the first step, the transformed system becomes:

Gt =

 U ′AU | U ′B
−−− | − −−
CU | D

 =


At11 At12 | Bt1

0 At22 | Bt2

−−− −−− | − −−
Ct1 Ct2 | D

 (14)

Step 2 The transformed system Gt in the first step, contains a coupling term At12. Using
transformation Xt = WX, we obtain completely decoupled system Gd as follows:

Gd =

 W−1AtW | W−1Bt

−−− | − −−
CtW | D

 =


A11 0 | B1

0 A22 | Bt

−−− −−− | − −−
C1 C2 | D

 (15)

The transformed model can be decomposed into stable and unstable subsystems as follows

Gd =

 A11 | B1

−−− | − −−
C1 | D

+

 A22 | B2

−−− | − −−
C2 | 0


= Gs(Stable subsystem) +Gu(Unstable subsystem)

(16)

By using the parameters defined in the preceding section, the stable and unstable subsystems
are given by

Gs =



0.9980 −0.0000 −0.0022 0.0014 0.0002 −0.0009 −0.0044 | −0.0041
0 0.8465 0 0 0 0 0 | 0
0 0 0.9663 −0.0353 −0.0172 −0.0155 −0.0071 | 0.0002
0 0 0 0.9663 −0.0325 −0.0294 −0.0147 | −0.0004
0 0 0 0 0.9663 −0.0593 −0.0272 | 0.0008
0 0 0 0 0 0.9663 −0.0330 | −0.0245
0 0 0 0 0 0 0 | 16.000

−−−− −−−− −−−− −−−− −−−− −−−− −−−− | − −−−
−17.3644 −0.0000 −7.0040 2.4502 −0.9750 1.4097 0.0156 | 0


(17)

Gu =



1.0323 −0.0620 0.0321 −0.0174 0.0009 | −0.2121
0 1.0323 −0.0342 0.0185 −0.0006 | 0.2363
0 0 1.0323 −0.0368 −0.0009 | −0.5164
0 0 0 1.0323 −0.0014 | 0.9656
0 0 0 0 1.0000 | 0.0950

−−−− −−−− −−−− −−−− −−−− | − −−−
−3.7625 −3.2642 −1.5663 −0.8370 −3.2687 | 0


(18)

4.2. Reduction Stable Subsystem
4.2.1. Non-minimal system If the system Gs is stable and non-minimal, we can determine
the minimal order of system Gs by using ”minreal.m” command of Matlab [11]. It eliminates
uncontrollable or unobservable state in state-space models, The output has minimal order (m)
and has the same response characteristics as the stable subsystem. The order of minimal system
Gs is 6th.



5

1234567890

International Conference on Mathematics: Education, Theory and Application  IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 855 (2017) 012029  doi :10.1088/1742-6596/855/1/012029

4.2.2. Balanced Realized Model Reduction The steps of reduction [10] are as follows:

Step 1 Determining controllability and observability gramians. We solve the Lyapunov
equations for discrete-time system, and obtain the controllability Gramian, P and
Observability Gramian, Q:

APA− P +BB = 0 and ATQA−Q+ CC = 0

where in our case

P =


1.3940 −0.2355 0.4021 −0.8253 1.0620 −0.0660
−0.2355 0.2550 −0.0109 0.0735 −0.0881 0.0035
0.4021 −0.0109 0.8939 −0.0909 0.1600 −0.0063
−0.8253 0.0735 −0.0909 3.7160 −0.3654 0.0122
1.0620 −0.0881 0.1600 −0.3654 4.5936 −0.3927
−0.0660 0.0035 −0.0063 0.0122 −0.3927 256.0000

 (19)

Q = 104


7.5501 −0.1140 0.2893 −0.1134 −0.2496 −0.0255
−0.1140 0.0818 −0.0799 0.0310 −0.0164 0.0008
0.2893 −0.0799 0.1052 −0.0514 0.0226 −0.0016
−0.1134 0.0310 −0.0514 0.0345 −0.0231 0.0009
−0.2496 −0.0164 0.0226 −0.0231 0.0379 0.0003
−0.0255 0.0008 −0.0016 0.0009 0.0003 0.0001

 (20)

Step 2 Determination of hankel singular values (HSV). We obtain HSV of the system by finding
the square root of the eigen values of product of P and Q:

HSV =
√
λi(PQ) =

(
327.1102 45.1700 20.2872 9.9500 3.4579 0.8132

)
Step 3 Performing singular value decomposition (SVD) of the gramians

P = UpΣpV
T
p and Q = UqΣqV

T
q (21)

Step 4 Finding Truncation Matrices (SL and SR). Let VR = Up

√
Σp, VL = Uq

√
Σq and

E = V T
L VR, Perform singular value decomposition of E such that

E = UEΣEV
T
E (22)

Then, we get the truncation matrices are obtained as SL = VL UE V
−1/2
E In our problem,

the matrices SL and SR are given by

SL =


15.0779 4.9136 −1.3724 0.7625 −0.3531 0.0465
−0.3677 2.3781 −4.0138 4.0882 −2.6846 0.3729
0.7671 −3.5190 3.7912 −0.7231 −0.9586 0.1790
−0.3449 2.5361 −0.4330 −1.0507 −0.3756 0.1085
−0.3961 −2.5627 −1.1332 −0.7168 −0.0245 0.0957
−0.0529 0.0289 0.0272 0.0317 0.0422 0.0512


and SR = VR UE V

−1/2
E

SR =


0.0651 0.0013 −0.0144 −0.0087 0.0103 0.0709
−0.0111 −0.0022 −0.0332 0.0861 −0.1782 0.1007
0.0205 −0.0407 0.1350 −0.0406 −0.2717 0.2210
−0.0418 0.1506 −0.0346 −0.3925 −0.3485 0.4200
0.0443 −0.1830 −0.2738 −0.2600 −0.0821 0.5227
−0.0440 0.1801 0.3677 0.8396 3.1280 16.0818


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Step 5 Obtaining Balanced Realized Minimal Model. BT model of Gs using the truncation
matrices SL and SR is as follows,

Gd =

 Abal | Bbal

−−− | − −−
Cbal | Dbal

+

 S′LASR | S′LB
−−− | − −−
CSR | D

 (23)

In our case, the balanced realized minimal model is given by:

Gbal =



0.9988 −0.0016 0.0012 −0.0015 0.0018 −0.0022 | −0.8988
0.0016 0.9971 0.0095 −0.0048 0.0082 −0.0091 | 0.5083
0.0012 −0.0095 0.9944 0.0234 −0.0133 0.0190 | 0.4663
0.0015 −0.0048 −0.0234 0.9850 0.0538 −0.0414 | 0.5221
0.0018 −0.0082 −0.0133 −0.0538 0.9217 0.1819 | 0.6760
0.0022 −0.0091 −0.0190 −0.0414 −0.1819 −0.0335 | 0.8174
−−−− −−−− −−−− −−−− −−−− −−−− | − −−−
−0.8988 −0.5083 0.4663 −0.5221 0.6760 −0.8174 | 0


Step 6 Obtaining rth order BT Model. We select the reduced order number r = 1 of the system

Gs on the basis of higher magnitudes of HSV. So, we get 1st order BT model as

Gsr−bt =

 0.9988 | −0.8988
−−−−− . −−−−−
−0.8988 | 0

 (24)

4.3. Reduced order model for original unstable system
The balanced truncated reduced model of unstable system is obtained by adding the unstable
subsystem into the reduced stable subsystem:

Gr−bt = Gsr−bt +Gu

In our case, it is given by

Gr−bt =



0.9988 0 0 0 0 0 | −0.8988
0 1.0323 −0.0620 0.0321 −0.0174 0.0009 | −0.2121
0 0 1.0323 −0.0342 0.0185 −0.0006 | 0.2363
0 0 0 1.0323 −0.0368 −0.0009 | −0.5164
0 0 0 0 1.0323 −0.0014 | 0.9656
0 0 0 0 0 1.0000 | 0.0950

−−−− −−−− −−−− −−−− −−−− −−−− | − −−−
−0.8988 −3.7625 −3.2642 −1.5663 −0.8370 −3.2687 | 0


(25)

5. Conclusion
In this work, we have developed a model reduction for unstable systems. Even our procedure
works for non-minimal systems. Furthermore we have successfully obtained a reduced model
for shallow water equations. We can use the results in this paper to design a low-dimensional
controller, observer and some other applications. In this approach, we have not analyzed the
procedure formally. We are planning to work on such issue in the future.
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