
1

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

1234567890

International Conference on Mathematics: Education, Theory and Application  IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 855 (2017) 012023  doi :10.1088/1742-6596/855/1/012023

Identification and estimation of state variables on

reduced model using balanced truncation method

Trifena Punana Lesnussa, Didik Khusnul Arif, Dieky Adzkiya and
Erna Apriliani

Department of Mathematics, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia

E-mail: trivelesnussa@gmail.com, didik@matematika.its.ac.id,

dieky@matematika.its.ac.id, april@matematika.its.ac.id

Abstract. In this paper, we study the identification of variables on a model reduction process
and estimation of variables on reduced system. We aim to relate variables on reduced and
original system, so that we can compare the estimation accuracy of the original system and
reduced system. As such, the objective of this paper is to discuss identification and estimation
of variables on reduced model. First, model order reduction is done by using balanced truncation
method. This process begins with the construction of balanced system. After that, we identify
the relationship between variables of the balanced system and the original system. Then,
we eliminate variables of the balanced system that have a small influence on the system.
Furthermore, we estimate state variables on the original system and reduced system using a
Kalman Filter algorithm. Finally, we compare the estimation result of the identified reduced
and original system.

1. Introduction
Generally, a system in nature has a great order. This is because the system has many state
variables. If the number of state variables in a system is increased, the system is closer to the real
phenomenon. However, it caused difficulties in analyzing the system. Thus the computational
time is increased significantly. Therefore, we need a method to simplify the order of such
systems. In this case, we reduce the order of the original system. One way is using model order
reduction [1]. There are many methods in model order reduction, such as balanced truncation
method, Hankel norm approximation and singular perturbation approximation [1]. Among those
methods, balanced truncation method is the frequently used method because of the simplicity
of the method [2, 3].

Estimation is a method to compute the state variables of a discrete-time stochactic system
based on measurement data [4]. Kalman filter is an optimal estimation method for linear
systems. For nonlinear systems, there are many methods that can be applied such as extended
Kalman filter, ensemble Kalman filter, fuzzy Kalman filter. We have studied the application
of extended Kalman filter and fuzzy Kalman filter on Nonisothermal Continuous Stirred Tank
Reactor systems in [5].

We have investigated the application of Kalman filter to the original system and its reduced
system in [6, 7]. Then in [8], the authors have developed Kalman filter algorithm on reduced
system. However there are some difficulties in comparing the accuracy of estimation between the
original system and reduced system because the order is different. More precisely, we want to
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compare the estimation of state variables. Since the dimension of state variables in the reduced
and original models are different, we cannot compare them. Therefore, we need an identification
of state variables on reduced model such that we can determine the corresponding state variables
on the original model. In this paper, we want to determine a relationship between state variables
on the reduced and original models: given a state variable in the reduced model, we can compute
the corresponding state variable in the original model.

2. Preliminaries
In this section, we describe some definitions that will be used in this paper.

2.1. Discrete-Time Linear-Time-Invariant Systems
A discrete-time linear-time-invariant system (A,B,C,D) is defined as [4]

xk+1 = Axk +Buk

zk = Cxk +Duk
(1)

where xk ∈ Rn, uk ∈ Rm, zk ∈ Rp and A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m are
constant matrices. There are many properties that a system may have. Stability, controllability
and observability are some important properties of a system. As it will be clear later, we focus
on the previous three properties.

Definition 1 (Stability) A discrete-time linear-time-invariant system (1) is asymptotically
stable if and only if |λi(A)| < 1 for i = 1, 2, · · · , n with λi(A) denotes eigenvalues of A. If
|λi(A)| ≤ 1 for i = 1, 2, · · · , n then the system is stable.

Definition 2 (Controllability) The discrete-time linear-time-invariant system (1) is control-
lable if rank of the controllability matrix Mc = [B|AB| · · · |An−1B] equals n.

Definition 3 (Observability) The discrete-time linear-time-invariant system (1) is observ-
able if rank of the observability matrix Mo = [C|CA| · · · |CAn−1]T equals n.

Definition 4 (Controllability and Observability Gramians) The controllability gramian

of the discrete-time linear-time-invariant system (1) is W =
∑∞

k=0A
kBBT

(
AT
)k

. The
observability gramian of the discrete-time linear-time-invariant system (1) is M =∑∞

k=0

(
AT
)k
CTCAk.

The controllability and observability gramians are respectively a unique positive definite
solution of the following Lyapunov equation:

AW +WAT +BBT = 0

ATM +MA+ CTC = 0

2.2. Model Reduction of Discrete-Time Linear-Time-Invariant Systems
In this section, we describe the process of model order reduction using balanced truncation
method. This process begins with the construction of balanced system (or balanced realization).
On balanced system, we identify the relationship between variables of the original and balanced
systems. After all variables have been identified, we eliminate the variables that have small
influence to the system.
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2.2.1. Balanced Realization Balanced system is a system such that controllability and
observability gramians are equal. Furthermore the gramian is a diagonal matrix. Balanced
system is obtained by applying a transformation to the original system (A,B,C,D). Suppose
that defined of gramian like diag(σ1, σ2, · · · , σn) with σ1 ≥ σ2 ≥ · · · ≥ σn > 0 and σ1, σ2, · · · , σn
is singular Hankel value.

From the original system (A,B,C,D), we construct a new system (Ã, B̃, C̃, D̃). The new
system can be constructed if and only if realization of the system is asymptotically stable, have
controllability gramian W̃ and observability gramian M̃ is equal and it is a diagonal matrix.

Let us describe a procedure to determine transformation matrix T . First, we check whether
realization (A,B,C,D) is asymptotically stable, controllable and observable. Second, compute
the controllability gramian W and observability gramian M by using Definition 4. Third, we
use Cholesky factorization on W to determine φ such that W = φφT . Next, we use singular
value decomposition on φTMφ to compute U and Σ such that φTMφ = UΣ2UT . The last step,
compute transformation matrix T = Σ1/2UTφ−1.

By applying the transformation matrix to the original realization, xk = T x̃k we obtain an
ordered balanced realization (Ã, B̃, C̃, D̃) = (T−1AT, T−1B,CT,D).

2.2.2. Identification of Variables Let a transformation matrix T be given such that it meets
the following equation:

xk = T x̃k (2)

In this work, we focus on the identification of variables in the balanced system and the original
system.

2.2.3. Balanced Truncation Methods Model reduction by using balanced truncation simply
applies the truncation operation to a balanced realization. Let (Ã, B̃, C̃, D̃) be a balanced
realization, where the gramian is denoted by Σ. Remember that the controllability gramian is
equal to the observability gramian and the gramian is a diagonal matrix. First we partition the
gramian as follows

Σ =

(
Σ1 0
0 Σ2

)
(3)

where Σ1 = diag(σ1, σ2, · · · , σr), Σ2 = diag(σr+1, σr+2, · · · , σn) and σr > σr+1.
By using the preceding partition, the corresponding partition of balanced system (Ã, B̃, C̃,D)

is given by

G =

 Ã11 Ã12 B̃1

Ã21 Ã22 B̃2

C̃1 C̃2 D

 (4)

where Ã =

(
Ã11 Ã12

Ã21 Ã22

)
, B̃ =

(
B̃1

B̃2

)
, and C̃ =

(
C̃1 C̃2

)
. The reduced model is defined as

the subsystem corresponding to Σ1. Thus the reduced model can be written as (Ãr, B̃r, C̃r, D̃r)
where Ãr = Ã11, B̃r = B̃1, C̃r = C̃1 and D̃r = D.

Next, we present a proposition saying that the truncation of a balanced realization is again a
balanced realization. Furthermore, the proposition also states that the properties of the original
realization are the same with the truncated one.

Proposition 5 ([1, Lemma 9.4.1]) Suppose (Ã, B̃, C̃, D̃) is a balanced realization and
assumed it is stable, controllable, observable and balanced with gramian

M̃ = Ñ = diag(σ1, σ2, · · · , σn), σ1 ≥ · · · ≥ σr ≥ · · · ≥ σn > 0
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If σr > σr+1 then reduced system of order r will be stable, controllable, observable, balanced and
satisfies ‖Gs−Gsr‖∞ ≤ 2(σr+1+ · · ·+σn) with Gs and Gsr is a transfer function of (Ã, B̃, C̃, D̃)
and the reduced system (Ãr, B̃r, C̃r, D̃r), respectively.

2.3. Kalman Filter on Discrete-Time Linear-Time-Invariant System
In this section, we describe the process of Kalman filter algorithm over the original system
and reduced system. Firstly, we analyze an estimation process of state variables in discrete-time
linear-time-invariant system (1). Here, we analyze the estimation process and construct the best
estimator for discrete-time linear-time-invariant system (1) based on the Kalman filter algorithm
[4]. Furthermore, we apply the Kalman filter procedure to original model and reduced model.

In Kalman filter, the model is described as a stochastic discrete-time linear-time-invariant
system, as follows

xk+1 = Axk +Buk +Gwk,

zk = Cxk +Duk + vk,
(5)

where xk ∈ Rn is a state vector at time k, uk ∈ Rm is an input vector at time k, zk ∈ Rp is a
measurement vector or output vector at time k, wk is a system noise and vk is a measurement
noise. Variables wk and vk are normally distributed random variables, i.e. wk ∼ N(0, Q) and
vk ∼ N(0, R). Matrices A, B, C and D are appropriately dimensioned real constant matrices.

Estimation of state variables in the system (5) can be done by using Kalman filter. First, we
estimate the state variables based on a dynamic system (prediction step) and then we improve
the estimation results by using the measurement data (correction step). The Kalman filter
algorithm for stochastic discrete-time system is as follows [4]:

(i) Initialization

• Define the estimation of initial state x̂0
• Define the covariance of initial state’s estimation P0

• Define the variance of system noise Q
• Define the variance of measurement noise R

(ii) Prediction step

(a) Error Covariance: P−k+1 = APkA
T +GQGT

(b) Estimation: x̂−k+1 = Ax̂k +Buk

(iii) Correction step

(a) Error Covariance: Pk+1 = P−k+1 − P
−
k+1C

T (CP−k+1C
T +R)−1CP−k+1

(b) Estimation: x̂k+1 = x̂−k+1 + Pk+1C
TR−1(zk+1 − Cx̂−k+1)

Initially, we define the estimation of initial state and its covariance. In this step, we also
define the variance of system and measurement noises. After that, in each time step, we execute
the prediction and correction steps. Notice that in the prediction step, we do not need any
measurement data, whereas in the measurement step, we need a measurement data at that time
step.

3. Main Results
In this section, we discuss the steps in the identification of state variables on the reduced
model. Firstly, we construct a discrete-time linear-time-invariant system (A,B,C,D). Then,
we examine the properties of the system, such as stability, controllability and observability. If
the system is asymptotically stable, controllable and observable, we continue to the next step.
If the system is not asymptotically stable or the system is not controllable or the system is not
observable then we have to construct another system until the three properties are satisfied.
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Then, we construct the balanced system. The balanced system is a transformation of the
original system using a transformation matrix. On balanced system, we identify the relationship
between state variables of the original and balanced systems. After all state variables in balanced
system have been identified, we remove state variables of the balanced system that have small
influences on the system using balanced truncation method.

The last step is estimation of reduced and original systems by using Kalman filter algorithm.
Finally, we compare the estimation result of the reduced and original system. More precisely,
first we identify the states corresponding to the estimation results of reduced system, then we
compare the identification results against the estimation results over the original system. In this
study, we use a reduced system of order 6.

3.1. Construction of The Original System
Given the following discrete-time linear-time-invariant system:

x1
x2
x3
x4
x5
x6
x7
x8


k+1

=



0.2 0 0 0 0 0 0 −1
0 −0.5 0 0 0 1 0 0
0 0 0.8 0 0 3 0 0
0 −1 0 0.7 0 0 0 0
0 0 0 0 −0.5 0.4 0 0
0 0 0 0 0.2 −0.6 0 0
0 0 0 0 2 0 −0.81 0
0 0 −2 0 0 0 0 0.9





x1
x2
x3
x4
x5
x6
x7
x8


k

+



4
1
3
3
−2
1
4
1


uk

yk =
(
1 5 3 7 −3 2 4 6

)


x1
x2
x3
x4
x5
x6
x7
x8


k

+ uk

(6)

This system (6) is asymptotically stable, controllable and observable. Since the system in (6)
satisfies the three properties, we can use the system in the numerical example.
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3.2. Model Order Reduction
3.2.1. Balanced System We obtain the following balanced system

x̃1
x̃2
x̃3
x̃4
x̃5
x̃6
x̃7
x̃8


k+1

=



0.9630 0.1108 −0.0024 −0.0087 −0.0148 −0.0011 −0.0001 −0.0000
−0.1108 0.5633 −0.4411 0.0630 0.1315 0.0017 0.0006 0.0003
0.0024 −0.4411 −0.8034 −0.0835 −0.1420 −0.0096 −0.0006 −0.0003
−0.0087 −0.0630 0.0835 0.8972 0.3007 −0.0489 0.0008 0.0006
0.0148 0.1315 −0.1420 −0.3007 −0.0347 0.3154 0.0004 −0.0007
0.0011 0.0017 −0.0095 0.0489 0.3154 −0.0100 −0.1268 −0.0702
0.0001 0.0006 −0.0006 0.0008 0.0004 −0.1268 0.7454 −0.2847
−0.000 −0.0003 0.0003 0.0006 0.0007 0.0702 0.2847 −0.3364





x̃1
x̃2
x̃3
x̃4
x̃5
x̃6
x̃7
x̃8


k

+

(
−9.2733 −12.2348 −1.1801 −1.3131 2.3704 0.1318 0.0109 −0.0056

)T
ũk

ỹk =
(
9.2733 −12.2348 −1.1801 1.3131 2.3704 0.1318 0.0109 0.0056

)


x̃1
x̃2
x̃3
x̃4
x̃5
x̃6
x̃7
x̃8


k

+ ũk

(7)
The transformation matrix used to obtain the balanced system (7) is as follows

T =



−2.4836 2.7670 −1.0787 −0.7136 5.0536 4.6166 0.9975 −2.4005
−0.0078 −0.0038 0.2493 −0.1043 0.4635 −0.4272 −0.1333 0.2741
−0.1688 −0.1837 0.3369 0.2326 −0.0481 0.0043 0.1288 −0.3290
−0.0529 −0.1288 0.1588 −0.1614 0.4081 −0.2571 −0.6292 0.4543
0.0083 0.0887 0.1864 0.2261 −0.1375 0.0517 −0.0523 0.2043
−0.0030 −0.0482 −0.1442 −0.1395 0.0139 −0.0243 −0.0338 0.1123
−0.0010 −0.4052 −2.0874 0.6429 −1.1149 0.4837 −0.1793 0.8229
2.1179 −1.9245 0.9545 0.2277 −0.6083 −0.3822 0.7209 −0.6768


3.2.2. Identification of State Variables in the Balanced System In the following equation, we
describe the relationship between state variables of the original system and the balanced system:

x1
x2
x3
x4
x5
x6
x7
x8


=



−2.4836 2.7670 −1.0787 −0.7136 5.0536 4.6166 0.9975 −2.4005
−0.0078 −0.0038 0.2493 −0.1043 0.4635 −0.4272 −0.1333 0.2741
−0.1688 −0.1837 0.3369 0.2326 −0.0481 0.0043 0.1288 −0.3290
−0.0529 −0.1288 0.1588 −0.1614 0.4081 −0.2571 −0.6292 0.4543
0.0083 0.0887 0.1864 0.2261 −0.1375 0.0517 −0.0523 0.2043
−0.0030 −0.0482 −0.1442 −0.1395 0.0139 −0.0243 −0.0338 0.1123
−0.0010 −0.4052 −2.0874 0.6429 −1.1149 0.4837 −0.1793 0.8229
2.1179 −1.9245 0.9545 0.2277 −0.6083 −0.3822 0.7209 −0.6768





x̃1
x̃2
x̃3
x̃4
x̃5
x̃6
x̃7
x̃8


3.2.3. Balanced Truncation Method Since the reduced model is of order 6, the reduced model
is as follows. The reduced model is obtained by removing the state variables x̃7 and x̃8 from the
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balanced system.
x̃r1
x̃r2
x̃r3
x̃r4
x̃r5
x̃r6


k+1

=


0.9630 0.1108 −0.0024 −0.0087 −0.0148 −0.0011
−0.1108 0.5633 −0.4411 0.0630 0.1315 0.0017
0.0024 −0.4411 −0.8034 −0.0835 −0.1420 −0.0096
−0.0087 −0.0630 0.0835 0.8972 0.3007 −0.0489
0.0148 0.1315 −0.1420 −0.3007 −0.0347 0.3154
0.0011 0.0017 −0.0095 0.0489 0.3154 −0.0100




x̃r1
x̃r2
x̃r3
x̃r4
x̃r5
x̃r6


k

+


−9.2733
−12.2348
−1.1801
−1.3131
2.3704
0.1318

 ũrk

ỹrk =
(
9.2733 −12.2348 −1.1801 1.3131 2.3704 0.1318

)

x̃r1
x̃r2
x̃r3
x̃r4
x̃r5
x̃r6


k

+ ũrk

3.2.4. Identification of State Variables in the Reduced System In this section, we describe
the relationship between state variables of the original system and the reduced system. This
relationship is derived from the identification of state variables in the balanced system. More
precisely, we remove the columns of transformation matrix T that corresponds to the removed
state variables. The relationship between state variables of the original system and the reduced
system is described in the following equation:

x1
x2
x3
x4
x5
x6
x7
x8


=



−2.4836 2.7670 −1.0787 −0.7136 5.0536 4.6166
−0.0078 −0.0038 0.2493 −0.1043 0.4635 −0.4272
−0.1688 −0.1837 0.3369 0.2326 −0.0481 0.0043
−0.0529 −0.1288 0.1588 −0.1614 0.4081 −0.2571
0.0083 0.0887 0.1864 0.2261 −0.1375 0.0517
−0.0030 −0.0482 −0.1442 −0.1395 0.0139 −0.0243
−0.0010 −0.4052 −2.0874 0.6429 −1.1149 0.4837
2.1179 −1.9245 0.9545 0.2277 −0.6083 −0.3822




x̃r1
x̃r2
x̃r3
x̃r4
x̃r5
x̃r6



3.2.5. Simulation In this simulation, we compare state variables on the original system and
identified state estimation on reduced systems. The estimation of state variables on the reduced
system is done by using Kalman filter algorithm. The procedure for estimation of identified
state variables on the reduced system is as follows. First, we apply balanced truncation method
to the original system. In this step, we obtain a reduced system. Then we apply Kalman filter
algorithm on the reduced system. In this step, we obtain estimation of state variables on the
reduced system. Finally, we use the identification result. In this step, we obtain the identified
state estimation on the reduced system that has the same dimension with the original system.
This allows us to compare the identified state estimation on the reduced system and the state
on the original system. In this case, we determine the estimation error on the identified state
variables. The estimation error is defined as the difference between the estimation results of
identified state variables on the reduced system and real states on the original system. The
comparison results are shown in Table 1 and the graphics are shown in Figure 1. From Table 1,
the estimation error on the identified state estimation is quite close to the real values.

Furthermore we want to compare the estimation result in Table 1 and the estimation error
of the original system. In Table 2, we display the estimation error of the original system. The
estimation error is defined as the difference between the estimation results of state variables
on the original system and real states on the original system. According to Tables 1 and 2,
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Figure 1. Error of estimation results
on the identified state estimation of the
reduced system and state on the original
system. The x-axis represents the time
index, whereas the y-axis represents the
error at each time. Each line plot represents
a state component. Since dimension of the
state space is 8, there are 8 plots in the
figure.

Table 1. Estimation error of the identified reduced system.

time Estimation error of the identified reduced system
step x1 x2 x3 x4 x5 x6 x7 x8

1 -0.508 -0.029 -0.041 -0.002 -0.069 0.0198 0.1637 0.4973
2 1.1773 0.0873 0.0631 0.0423 0.042 -0.059 -0.805 -0.778
3 0.8762 -0.204 -0.18 -0.056 0.0319 0.0646 0.9103 -0.799
4 -0.293 0.1614 0.1214 0.2225 0.136 -0.099 -0.233 0.7497
5 -0.46 -0.039 0.1279 0.1228 0.1459 0.0046 -0.299 0.601
6 -0.245 0.007 0.1883 0.1205 -0.078 0.0842 0.1452 -0.027
7 -0.154 -0.03 0.3448 0.1116 0.0751 -0.093 -0.126 -0.449
8 0.4889 -0.014 0.1985 0.2061 -0.049 -0.007 -0.448 -1.169

Table 2. Estimation Error of the Original system of all state variables for the first 8 time steps.

time Estimation error of the original system
step x1 x2 x3 x4 x5 x6 x7 x8

1 -0.263 0.1048 -0.174 0.0414 -0.015 -0.141 -0.039 -0.157
2 -0.121 0.0486 -0.068 0.0603 -0.156 0.0841 -0.096 -0.074
3 0.2297 0.1002 0.0131 -0.029 -0.07 -0.186 0.0829 -0.018
4 0.1753 0.1961 0.2639 0.1207 0.1192 -0.005 0.0998 -0.071
5 0.1488 -0.088 0.0391 0.0549 0.0446 0.1556 -0.03 0.1687
6 0.1108 -0.118 0.0428 0.0105 0.1477 -0.033 -0.025 0.1005
7 -0.098 0.3075 -0.434 0.4199 -0.216 0.3272 0.0301 -0.056
8 0.0831 -0.787 -0.036 -0.123 -0.191 0.5306 0.4268 0.1269

the estimation error of both cases is pretty close. Thus we conclude that the performance of
estimation on the identified state variables is acceptable.

In Table 3, we discuss the computational times of both cases. In the first case, we measure
the computational time for estimation of state variables on the original system. In the second
case, we measure the computational time for estimation of identified state variables. According
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to Table 3, the computational time for estimation in the reduced system is faster than in the
original system. This is because the number of state variables in the reduced system is smaller
than the number of state variables in the original system.

Table 3. Computational times for the estimation process in the original and reduced systems.

Computational time (sec)

Original system 5.21722
Identified reduced system 3.164235

4. Conclusions
In this work, we have designed a procedure for identification and estimation of state variables on
reduced models of discrete-time linear-time-invariant systems. From the identification process,
we obtain the corresponding state variables in the original model from state variables in the
reduced model via a linear transformation. Thus we can compare the state variables in the
identified reduced model and original model. The estimation error in the original system is
quite close to the error in the identified reduced system. However, the computational time for
estimation in the reduced system is faster than the computational time for estimation in the
original model.
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