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Abstract. Let G be a simple, connected and undirected graph with vertex set V and edge set E.
A total k-labeling f : V ∪ E → {1, 2, . . . , k} is defined as totally irregular total k-labeling if the
weights of any two different both vertices and edges are distinct. The weight of vertex x is defined as
wt(x) = f(x) +

∑
xy∈E f(xy), while the weight of edge xy is wt(xy) = f(x) + f(xy) + f(y). A

minimum k for which G has totally irregular total k-labeling is mentioned as total irregularity strength of
G and denoted by ts(G). This paper contains investigation of totally irregular total k-labeling for caterpillar
graphs Sn,2,m and determination of their total irregularity strengths. In addition, the total vertex and total
edge irregularity strength of this graph also be determined. The results are tvs(Sn,2,m) =

⌈
n+m−1

2

⌉
,

tes(Sn,2,m) =
⌈
n+m+2

3

⌉
, and ts(Sn,2,m) =

⌈
n+m−1

2

⌉
for n,m ≥ 3.

1. Introduction
Let us consider a simple, connected and undirected graph G with a vertex set (V (G)) and an edge set
(E(G)). A labeling of a graph G is a mapping that carries a set of graph elements into a set of integers,
called labels (see Wallis [10]). If the domain of mapping is a vertex set, or an edge set, or a union of vertex
and edge sets, then the labeling is called vertex labeling, edge labeling, or total labeling, respectively. In
his survey, Gallian [2] shows that there are various kinds of labelings on graphs, and one of them is an
irregular total labeling.

For a graph G, Bača et al. [1] defined a labeling f : V (G) ∪ E(G) → {1, 2, . . . , k} to be a vertex
irregular total k-labeling if for every two different vertices x and y the vertex-weights wtf (x) ̸= wtf (y),
where the vertex-weight wtf (x) = f(x) +

∑
xz∈E f(xz). A minimum k for which G has a vertex

irregular total k-labeling is defined as the total vertex irregularity strength of G and denoted by tvs(G).
They obtained the exact values of the total vertex irregularity strength for cycle, star, complete graphs
and prisms. Moreover, Nurdin et al. [7] proved the exact value of the total vertex irregularity strength
for any tree T with n pendant vertices and no vertex of degree two, that is

tvs(T ) =

⌈
n+ 1

2

⌉
. (1)

For a graph G, Bača et al. [1] also define a labeling g : V (G) ∪E(G) → {1, 2, . . . , k} to be an edge
irregular total k-labeling of the graph G if for every two different edges xy and x′y′ of G the edge-
weights wtg(xy) = g(x) + g(xy) + g(y) and wtg(x

′y′) = g(x′) + g(x′y′) + g(y′) are different. The
total edge irregularity strength denoted by tes(G), is defined as the minimum k for which G has an edge
irregular total k-labeling. They also obtained the exact values of the tes for path, cycle, star, wheel
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and friendship graphs. The tes of generalized web graphs have been determined by Indriati et al. [3].
Moreover, Ivančo and Jendrol [5] proved that for any tree T , satisfy

tes(T ) = max {⌈(|E(T )|+ 2)/3⌉ , ⌈(∆(T ) + 1)/2⌉} . (2)

Combining the ideas of vertex irregular total k-labeling and edge irregular total k-labeling, Marzuki
et al. [6] introduced another irregular total k-labeling called the totally irregular total k-labeling.
A labeling h : V (G) ∪ E(G) → {1, 2, . . . , k} to be a totally irregular total k-labeling of the graph
G if for every two different vertices x and y the vertex-weights wth(x) ̸= wth(y), where the vertex-
weight wth(x) = h(x) +

∑
xz∈E h(xz) and also for every two different edges xy and x′y′ of G the

edge-weights wth(xy) = h(x) + h(xy) + h(y) and wth(x
′y′) = h(x′) + h(x′y′) + h(y′) are different.

The total irregularity strength, ts(G), is defined as the minimum k for which G has a totally irregular
total k-labeling. For the total irregularity strength of a graph G, they observed that

ts(G) ≥ max{tes(G), tvs(G)}. (3)

They determined the total irregularity strength of cycle and path. Ramdani and Salman [8] obtained the
total irregularity strength of some cartesian product graphs, namely K1,n2P2, Pn2P2, (Pn + P1)2P2,
and Cn2P2. In [9], Ramdani et al. determined the total irregularity strength of Gear graphs Gn, n ≥ 3,
fungus graphs Fgn , n ≥ 3 and disjoint union of stars mSn, n,m ≥ 2. In [4], the total irregularity strength
of double stars Sn,m and caterpillar Sn,2,n has been determined. In this paper, we continue to investigate
the total irregularity strength of caterpillar Sn,2,m for n,m ≥ 3.

2. Caterpillar Sn,2,m

A caterpillar Sn,2,m is a class of graph constructed from the double-star Sn,m by inserting one vertex on
the bridge connecting of the two centers of two stars. Therefore, this caterpillar contains three stars with
the center of the two end-stars have degree n and m respectively, while the center of the middle star has
degree two. This graph is a tree with n+m+ 1 vertices, n+m edges and n+m− 2 pendant vertices.
Assume n ≤ m. If n > m, then change n by m, for example S7,2,5 can be written by S5,2,7. Maximal
degree of the graph is ∆ = m.
According to (3), the lower bound of its total irregularity strength is the maximum value between its total
edge irregularity strength and its total vertex irregularity strength. The total edge irregularity strength of
graph Sn,2,m can be found by (2), that is

tes(Sn,2,m) = max
{⌈

∆+ 1

2

⌉
,

⌈
|E|+ 2

3

⌉}
= max

{⌈
m+ 1

2

⌉
,

⌈
n+m+ 2

3

⌉}
=

⌈
n+m+ 2

3

⌉
.

(4)
The next theorem gives the total vertex irregularity strength of Sn,2,m.

Theorem 2.1. Let consider the caterpillar Sn,2,m, n,m ≥ 3. Its total vertex irregularity strength is

tvs(Sn,2,m) =

⌈
n+m− 1

2

⌉
.

Proof. Sn,2,m is a tree with n +m + 1 vertices, n +m edges and n +m − 2 pendant vertices. There
is a vertex (that is a center of middle star) has degree two, therefore (1) can not be used for determining
the total vertex irregularity strength of the graph. Sn,2,m has n +m − 2 pendant vertices, one vertex of
degree two and two vertices of degree n,m ≥ 3 respectively. In order to obtain as small as possible label,
start the labeling from the vertex with smallest degree (in this situation, pendant vertices have a smallest
degree). After that, we label vertices with greater degree and continue until all vertices are labeled. The
smallest vertex-weight is two, then with a consecutive weights, the smallest weight of n+m−2 pendant
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vertices is not smaller than n+m−2+1 = n+m−1 which is a sum of two labels, namely the label of
pendant vertex and the label of edge incident to this vertex. Then, the greatest label of pendant vertices
is not smaller than

⌈
n+m−1

2

⌉
. There is a vertex of degree two, therefore the greatest vertex-label is not

smaller than
⌈
n+m
3

⌉
. For vertex of degree n, the greatest label is not smaller than

⌈
n+m+1
n+1

⌉
. The same

idea, for vertex of the largest degree, m, the greatest label is not smaller than
⌈
n+m+2
m+1

⌉
. Therefore, the

greatest label of all vertices is not smaller than

max
{⌈

n+m− 1

2

⌉
,

⌈
n+m

3

⌉
,

⌈
n+m+ 1

n+ 1

⌉
,

⌈
n+m+ 2

m+ 1

⌉}
=

⌈
n+m− 1

2

⌉
.

Let the vertex set of this graph be V (Sn,2,m) = {v1i : 1 ≤ i ≤ m−1}∪{v3i : 1 ≤ i ≤ n−1}∪{vj : j =
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Figure 1. The caterpillar Sn,2,m

1, 2, 3} and the edge set be E(Sn,2,m) = {v1v1i : 1 ≤ i ≤ m− 1}∪ {v3v3i : 1 ≤ i ≤ n− 1}∪ {vjvj+1 :
j = 1, 2}. Figure 1 shows the illustration of this graph. To determine the exact value of tvs, define the
vertex irregular total k-labeling h as follows.
Case 1: For both n and m are odd or even.
Assume k =

⌈
n+m−1

2

⌉
.

h(v1i ) =

{
1, for 1 ≤ i ≤ k,

i− k + 1, for k + 1 ≤ i ≤ m− 1.

h(v3i ) = k + i− n, for 1 ≤ i ≤ n− 1.

h(vj) =

{
k − 1, for j = 1,

k, for j = 2, 3.

h(v1v1i ) =

{
i, for 1 ≤ i ≤ k,

k, for k + 1 ≤ i ≤ m− 1.

h(v3v3i ) = k, for 1 ≤ i ≤ n− 1.

h(vjvj+1) =

{
k − n+ 1, for j = 1,

k, for j = 2.
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Under the total labeling h, it is shown that the greatest label for all vertices is k =
⌈
n+m−1

2

⌉
. It means

that h is a total k-labeling with k =
⌈
n+m−1

2

⌉
. The weight of vertices are

wth(v
j
i ) =

{
i+ 1, for 1 ≤ i ≤ m− 1, j = 1,

m+ i, for 1 ≤ i ≤ n− 1, j = 3.

wth(v
j) =


k(k+1)

2 + (m+ 1− k)k − n, for j = 1,

3k − n+ 1, for j = 2,

(n+ 1)k, for j = 3.

The weight of vertices vji for j=1, 3 form a consecutive integers from 2 up to m and for m + 1 until
m + n − 1, respectively. The weights among vertices v1, v2, and v3 are distinct. Then, it indicates that
the weights of every pair of vertices are distinct. Therefore, we conclude that h is a vertex irregular total
k-labeling and the total vertex irregularity strength is tvs(Sn,2,m) = k =

⌈
n+m−1

2

⌉
.

Case 2: For n and m have a different parity and odd number less than even number.
Assume k =

⌈
n+m−1

2

⌉
. Define the vertex irregular total k-labeling h as follows.

h(v1i ) =

{
1, for 1 ≤ i ≤ k,

i− k + 1, for k + 1 ≤ i ≤ m− 1.

h(v3i ) = k + i− n+ 1, for 1 ≤ i ≤ n− 1.

h(vj) =

{
k − 2, for j = 1,

k, for j = 3.

h(v2) =

{
k − 1, for odd number = 3,

2k − 2n+ 2, for odd number ̸= 3.

h(v1v1i ) =

{
i, for 1 ≤ i ≤ k,

k, for k + 1 ≤ i ≤ m− 1.

h(v3v3i ) = k, for 1 ≤ i ≤ n− 1.

h(v1v2) =

{
k, for odd number = 3,

n, for odd number ̸= 3.

h(v2v3) =

{
k − 1, for odd number = 3,

n− 1, for odd number ̸= 3.

Under total labeling h, it is shown that the greatest label for all vertices is k =
⌈
n+m−1

2

⌉
. It means that
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h is a total k-labeling with k =
⌈
n+m−1

2

⌉
. The weights of vertices are

wth(v
j
i ) =

{
i+ 1, for 1 ≤ i ≤ m− 1, j = 1,

2k + i− n+ 1, for 1 ≤ i ≤ n− 1, j = 3.

wth(v
1) =

{
k(k+1)

2 + (m+ 1− k)k − 2, for odd number = 3,
k(k+1)

2 + (m− k)k + n− 2, for odd number ̸= 3.

wth(v
2) =

{
3k − 2, for odd number = 3,

2k + 1, for odd number ̸= 3.

wth(v
3) =

{
4k − 1, for odd number = 3,

(k + 1)n− 1 for odd number ̸= 3.

With the same reason as in Case 1, the weights of vertices vji for j=1, 3 form a consecutive integers
from 2 up to m and for m + 1 until m + n − 1, respectively and the weights among vertices v1, v2,
and v3 are distinct. Therefore, the weight of every pair of vertices are distinct. We conclude that h is a
vertex irregular total k-labeling and the total vertex irregularity strength is tvs(Sn,2,m) = k =

⌈
n+m−1

2

⌉
.

Case 3: For n and m have a different parity and odd number more than even number.
Assume k =

⌈
n+m−1

2

⌉
. The vertex irregular total k-labeling h is defined as follows.

h(v1i ) =

{
1, for 1 ≤ i ≤ k,

i− k + 1, for k + 1 ≤ i ≤ m− 1.

h(v3i ) = k + i− n+ 1, for 1 ≤ i ≤ n− 1.

h(vj) =

{
k − 2, for j = 1,

k, for j = 3.

h(v2) =

{
|m− n|+ 1, for 3n−m ≥ 3,

k, for 3n−m < 3.

h(v1v1i ) =

{
i, for 1 ≤ i ≤ k,

k, for k + 1 ≤ i ≤ m− 1.

h(v3v3i ) = k, for 1 ≤ i ≤ n− 1.

h(v1v2) =

{
n, for 3n−m ≥ 3,

k − n+ 2, for 3n−m < 3.

h(v2v3) =

{
n− 1, for 3n−m ≥ 3,

k − n+ 1, for 3n−m < 3.

Under total labeling h, it is shown that the greatest label for all vertices is k =
⌈
n+m−1

2

⌉
. It means that
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h is a total k-labeling with k =
⌈
n+m−1

2

⌉
. The weights of vertices are

wth(v
j
i ) =

{
i+ 1, for 1 ≤ i ≤ m− 1, j = 1,

2k + i− n+ 1, for 1 ≤ i ≤ n− 1, j = 3.

wth(v
1) =

{
k(k+1)

2 + (m− k)k + n− 2, for 3n−m ≥ 3,
k(k+1)

2 + (m+ 1− k)k − n, for 3n−m < 3.

wth(v
2) =

{
2n+ |m− n|, for 3n−m ≥ 3,

3k − 2n+ 3, for 3n−m < 3.

wth(v
3) =

{
nk + n− 1, for 3n−m ≥ 3,

(n+ 1)k − n+ 1, for 3n−m < 3.

With the same reason as in Case 2, the weight of vertices vji for j=1, 3 form a consecutive integers from
2 up to m and for m+ 1 until m+ n− 1, respectively and the weight among vertices v1, v2, and v3 are
distinct. It means that the weight of every pair of vertices are distinct. Therefore, h is a vertex irregular
total k-labeling. The total vertex irregularity strength of this graph is tvs(Sn,2,m) = k =

⌈
n+m−1

2

⌉
.

From the three cases, it is shown that the total vertex irregularity strength of caterpillar Sn,2,m is⌈
n+m−1

2

⌉
.

The next theorem proved the total irregularity strength of graph Sn,2,m as follows.

Theorem 2.2. Let Sn,2,m, n,m ≥ 3 be a caterpillar graph. Then the total irregularity strength of this
graph is

ts(Sn,2,m) =

⌈
n+m− 1

2

⌉
.

Proof. With the same statement as in Theorem 2.1, Sn,2,m is a tree with n + m + 1 vertices, n + m
edges and n +m − 2 pendant vertices. Theorem 2.1 proved that tvs(Sn,2,m) =

⌈
n+m−1

2

⌉
. Total edge

irregularity strength of this graph is in (4). According to (3), the lower bound of the total irregularity
strength is

ts(Sn,2,m) ≥max{tes(Sn,2,m), tvs(Sn,2,m)} = max
{⌈

n+m+ 2

3

⌉
,

⌈
n+m− 1

2

⌉}
=

⌈
n+m− 1

2

⌉
.

To prove the exact value of the total irregularity strength of this graph, ts(G), we will show the existence
of the totally irregular total k-labeling as follows. The similar definition of vertex and edge set of Sn,2,m

is presented in Theorem 2.1. In fact, the vertex irregular total k-labeling h which is obtained in Theorem
2.1 also satisfies the condition of totally irregular total k-labeling. The vertex weight distinction has been
shown in the proof of Theorem 2.1. Now, we only show the distinction of the edge weight of this graph.
By assume k =

⌈
n+m−1

2

⌉
, from the vertex irregular total k-labeling h in Theorem 2.1, the weight of the

edges are as follows.

wth(v
1v1i ) =

{
k + i, for 1 ≤ i ≤ m− 1, both n and m are odd or even,
k − 1 + i, for 1 ≤ i ≤ m− 1, n and m have a different parity

wth(v
3v3i ) =

{
3k − n+ i, for 1 ≤ i ≤ n− 1, both n and m are odd or even,
3k − n+ i+ 1, for 1 ≤ i ≤ n− 1, n and m have a different parity
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For the case 1: both n and m are odd or even.

wt(vjvj+1) =

{
3k − n, for j = 1,

3k, for j = 2.

For the case 2: n and m have a different parity, odd number < even number.

wt(vjvj+1) =

{
3k − n, for j = 1,

3k − n+ 1, for j = 2.

For the case 3: n and m have a different parity, odd number > even number.

wt(v1v2) =

{
k + n+ |m− n| − 1, for 3n−m ≥ 3,

3k − n, for 3n−m < 3.

wt(v2v3) =

{
k + n+ |m− n|, for 3n−m ≥ 3,

3k − n+ 1, for 3n−m < 3.

It can be seen that for the case 1, that is both n and m are odd or even, the weights of v1v1i and v3v3i form
a consecutive integers from k+ 1 up to k+m− 1 and for k+m+ 1 until k+m+ n− 1, respectively.
While for the case 2 and 3, that is n and m have a different parity, the weights of v1v1i and v3v3i form a
consecutive integers from k up to k +m− 2 and for k +m+ 1 until k +m+ n− 1, respectively. For
the case 1, the weight of v1v2 is k +m and the weight of v2v3 is k +m + n. While for the case 2, the
weight of v1v2 is 3k − n and the weight of v2v3 is 3k − n + 1. Same as another cases, the weights of
v1v2 and v2v3 for the case 3 also different. Therefore, for all cases, the weight of each pair of edges are
distinct. Then we conclude that h is also totally irregular total k-labeling. Therefore, we determine that
the total irregularity strength of this graph is

⌈
n+m−1

2

⌉
.

Furthermore, we conclude this paper with the following open problem for the direction of further
research which is still in progress.
Open problem: What is the total irregularity strength of caterpillar Sn,2,2,...,m for t-times of 2’s.
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[1] Bača, M.,Jendrol, S., Miller, M., Ryan, J. On irregular total labeling. Discrete Math. 2007; 307: 1378-1388.
[2] Gallian, J. A. A Dynamic Survey of Graph Labeling. The Electronic Journal of Combinatorics 2014; 17 #DS6.
[3] Indriati, D., Widodo, Wijayanti, I.E., Sugeng, K.A. and Bača, M. On total edge irregularity strength of generalized web
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