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Abstract. In this paper we further investigate and validate the novel theoretical model of very 
large wind farms proposed recently by Nishino (J. Phys.: Conf. Ser. 753, 032054, 2016). One 
of the key features of the Nishino model is that a theoretically optimal turbine resistance (as 
well as optimal ‘turbine-scale’ and ‘farm-scale’ wind speed reduction rates) can be predicted 
analytically as a function of the farm density and the natural bottom friction observed before 
constructing the farm. To validate this theoretical model, a new set of 3D Reynolds-averaged 
Navier-Stokes (RANS) simulations are performed of a fully developed wind farm boundary 
layer over an aligned and staggered array of actuator discs with various disc resistance, inter-
disc spacing and bottom roughness values. The results show that the theoretical model, which 
employs only one empirical model parameter, can be easily calibrated to predict very well the 
performance of various staggered arrays of actuator discs. This suggests the usefulness of the 
theoretical model not only for providing an upper limit to the performance of ideal large arrays 
but also for predicting the performance of realistic large arrays. The results also highlight the 
important fact that the optimal turbine resistance can be significantly smaller in a dense wind 
farm than in a sparse wind farm. 

1.  Introduction 
The size of offshore wind farms has been dramatically increasing in recent years, causing a renewed 
interest in the modelling of very large wind farms. For example, in 2006, Frandsen et al. [1] reviewed 
a theoretical model for the interaction between a hypothetical very large wind farm and the planetary 
boundary layer (PBL), which was developed mainly by Frandsen and Emeis in the 1990’s [2, 3]. Later 
on, Emeis [4, 5] enhanced the model by considering the effect of atmospheric stability. Calaf et al. [6] 
also improved the model using results of large-eddy simulations (LES) of a fully developed wind 
turbine array boundary layer (WTABL). More recently, Meneveau [7] further extended the model by 
taking into account the development of an internal boundary layer starting from the entrance of a wind 
farm. This family of theoretical models, which employ the concept of ‘effective wind farm roughness’ 
and are often referred to as the ‘top-down’ models, predict the reduction of wind speed by a large 
number of turbines with a given (i.e. empirically known or assumed) thrust coefficient. 

Last year, a new type of theoretical model was proposed by Nishino [8] for the performance of a 
very large wind farm. Similarly to the traditional ‘top-down’ models, this new model also considers a 
fully developed boundary layer over a very large array of wind turbines. A noteworthy difference, 
however, is that the turbine thrust coefficient is not arbitrarily given but modelled using the classical 
(Lanchester-Betz type) actuator disc theory, which allows us to predict a practical upper limit to the 
efficiency of a very large wind farm together with ‘optimal’ wind speed reduction rates. The validity 
of this new theoretical model was only partially confirmed in [8]. Therefore in this study, we further 
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validate this theoretical model by means of a comparison with a series of Reynolds-averaged Navier-
Stokes (RANS) simulations of a fully developed boundary layer over an aligned and staggered array 
of actuator discs, for a range of inter-disc spacing, disc resistance and bottom roughness values. 

2.  Theoretical model 

2.1.  Nishino model 
The theoretical model of very large wind farms proposed by Nishino [8] is based on a simple ‘two-
scale coupled’ momentum conservation argument. The ‘farm-scale’ wind speed reduction factor, ߚ, is 
calculated from the momentum balance between the driving force of the atmospheric boundary layer 
(ABL) and the resistance due to the turbines’ thrust and bottom friction, whereas the ‘turbine-scale’ 
wind speed reduction factor, ߙ, is calculated from the classical actuator disc theory. Eventually, these 
two wind speed reduction factors ߙ and ߚ satisfy the following momentum conservation equation (see 
[8] for further details of the derivation): 
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ଶ  is the natural friction coefficient defined using the natural wind speed averaged 
across the so-called ‘farm layer’, ܷி଴. Note that ߚ ൌ ܷி/ܷி଴ (൑ 1) is the velocity ratio that indicates 
how much the farm-layer wind speed changes from its natural state, whereas ߙ ൌ ்ܷ/ܷி (൑ 1) is the 
ratio of the average wind speed through the turbine swept area to that through the farm layer. 

Although this model is essentially one-dimensional (1D; as with the classical actuator disc theory) 
and there are several possibilities in how to define the height of the farm layer, ܪி , in real three-
dimensional (3D) problems, Nishino [8] suggested that ܪி can be defined such that 
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where ܷ଴ሺݖሻ is the natural wind speed observed before constructing the wind farm. As will be shown 
later, this definition of ܪி tends to result in a very good agreement between the 1D theoretical model 
and 3D RANS simulations of actuator discs. 

The only empirical parameter employed in the Nishino model is ߛ in (1). This parameter describes 
how the bottom friction (shear stress) changes in response to the reduction of the average wind speed 
through the farm layer. Specifically, ߛ is defined such that 
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where 〈߬w〉 is the bottom shear stress averaged across the farm. Nishino [8] assumed 2 = ߛ to predict 
an upper limit to the performance of ‘ideal’ very large wind farms. For ‘real’ very large wind farms, 
however, the value of ߛ is expected to be less than 2 since the installation of turbines tends to increase 
the friction coefficient defined as ܥ௙

∗ ൌ 〈߬w〉/
భ
మ
ிܷߩ

ଶ. It will be shown later that the ߛ value in our 3D 
RANS simulations of actuator discs (for a range of conditions) is around 1.5 to 1.6. 

Based on the combination of ߙ and ߚ that satisfy the momentum conservation equation (1) for a 
given set of farm parameters ߣ and ܥ௙଴ and a given empirical parameter ߛ, we can calculate the thrust 
and power coefficients of an ideal turbine (actuator disc) in a very large wind farm as 
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where ்ܥ
∗  and ܥ௉

∗ are the ‘local’ or ‘turbine-scale’ thrust and power coefficients that are defined using 
ܷி instead of ܷி଴. As demonstrated in [8], this theoretical model allows us to estimate very easily the 
‘optimal’ set of wind speed reduction factors (ߙopt and ߚopt) to maximise the power output of a very 
large wind farm (for a given set of ܥ ,ߣ௙଴ and ߛ). 

2.2.  Additional notes on the Nishino model 
A particularly interesting point here (which was not explicitly mentioned in [8]) is that, since the flow 
around each turbine has been modelled using the classical actuator disc theory, the ‘turbine-scale’ 
wind speed reduction rate ߙ can be further linked to the so-called ‘turbine resistance’ [9] ܭ (which is 
equivalent to another ‘local’ thrust coefficient ்ܥ

ᇱ  [6] that is defined using ்ܷ instead of ܷி or ܷி଴). 
Specifically, the relationship between ܭ and ߙ can be described as  

	ܭ ൌ ்ܥ	
ᇱ 	ൌ 	

஼೅
∗

ఈమ
	ൌ 	

ସሺଵିఈሻ

ఈ
		               (6) 

This means that the Nishino model also allows us to estimate an ‘optimal’ turbine resistance (ܭopt) to 
maximise the power of a very large wind farm (for a given set of ܥ ,ߣ௙଴ and ߛ) as shown in Figure 1. 
As can be seen from the figure, the optimal turbine resistance decreases exponentially as the value of 
 .௙଴ increases (i.e. as the farm density increases relative to the natural friction coefficient)ܥ/ߣ

3.  RANS simulations 

3.1.  Geometry and flow conditions 
Similarly to [6] and [8], for all simulations in this paper, a boundary-layer flow driven by a constant 
streamwise pressure gradient is considered over an ‘infinitely large’ wind farm. This ‘infinitely large’ 
farm is modelled as a doubly periodic array of actuator discs. Only one disc is placed in the middle of 
a relatively small (but periodic) rectangular computational domain since we employ (steady) RANS 
simulations instead of LES. 

For all simulation cases, the disk diameter, D, is 100m. The disc is located at the centre of the 
domain with a vertical gap between the disc edge and the ground (bottom boundary) of 0.5D. The 
height of the computational domain, Ly, is fixed at 10D for all cases, whereas a square horizontal 
section of either (Lx, Lz) = (6D, 6D), (7D, 7D) or (14D, 14D) is employed, i.e. always keeping the 
streamwise (Lx) and spanwise (Lz) dimensions of the domain equal. 

 
Figure 1.  Theoretically optimal turbine resistance (ܭopt) required for ideal turbines (actuator 
discs) to achieve the maximum power coefficient (ܥP	max) in a very large wind farm. 
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The top boundary of the domain is treated as a symmetry boundary, whereas the side boundaries 
are treated as periodic boundaries. Two different types of array configurations are examined, namely 
‘aligned’ and ‘staggered’ configurations (Figure 2). For the aligned cases, the discs are fully aligned 
(spacing between neighbouring discs is 1 domain-length in both streamwise and spanwise directions, 
i.e. 6D, 7D or 14D). For the staggered cases, the discs are arrayed in a fully staggered arrangement 
(spanwise displacement between two consecutive rows, Δz, is 0.5 domain-length, i.e. 3D, 3.5D or 7D). 
The bottom boundary is treated as a wall with three different nominal roughness heights of	ܭ௦ ൌ 0m, 
1m and 5m (further details will be described later in Section 3.2 and in the Appendix). 

To determine the streamwise pressure gradient across the computational domain (to be given as a 
boundary condition for the farm simulations), a preliminary ‘empty box’ simulation (i.e. setting the 
turbine resistance K = 0) was performed for each of the three different roughness cases with a fixed 
mass flow rate yielding a cross-sectional average velocity of ܷ௔௩଴  = 10m/s. The results of these ‘empty 
box’ simulations are summarised in Table 1. For all simulations, the density and viscosity of air are 
assumed to be ߩ ൌ	1.2kg/m3 and ߤ ൌ 1.8 ൈ 10ିହkg/m-s, respectively. 

3.2.  Computational methods 
All computations, to solve numerically the 3D incompressible RANS equations, are performed using 
the commercial package ‘ANSYS FLUENT 16.2’ with its User Defined Functions (UDF) module for 
modifications. The Reynolds stress terms are modelled using the Standard k-ε model of Launder and 
Spalding [10] and the numerical method used is nominally second-order accurate in space for pressure, 
momentum, k and ε equations. The SIMPLE algorithm is used for pressure-velocity coupling. 

The actuator disc is modelled as a stationary permeable disc (or porous disc) similarly to [11, 12] 
but with a local correction (or suppression) to the turbulent viscosity around the disc edge [8]. The loss 
of momentum in the streamwise (x) direction (per unit disc area) is calculated as 

௫ܯ ൌ ܭ	 ∙
ଵ

ଶ
ௗܷߩ

ଶ      (7) 

where ܷௗ is the local (rather than disc averaged) streamwise velocity through the disc. Since the disc-
averaged thrust and power can be calculated as ܯ׬௫dܣ and ܯ׬௫ܷௗdܣ, respectively, the thrust and 
power coefficients of the disc are calculated as 
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  Table 1.  Summary of flow conditions 
obtained from ‘empty box’ simulations 

  Roughness 
Height, ܭ௦ [m] 

Pressure 
Gradient [Pa/m] 

0 െ6.43 ൈ 10ିହ 

1 െ25.98 ൈ 10ିହ 

5 െ37.88 ൈ 10ିହ 
 

 

(a) (b) 

 

Figure 2.  Schematic of array configurations: (a) aligned  
and (b) staggered (Δz = 0.5Lz). 
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For the disc resistance parameter K, two different values are used: K = 0.5 and 2, representing a low-
resistance and high-resistance turbine, respectively. Note that K = 2 is the theoretically optimal value 
for an isolated ideal turbine, regardless of whether the flow is sheared or not [9]. 

The effect of roughness of the bottom boundary (or ground) is modelled using a modified wall 
function for ‘fully rough’ walls available in ANSYS FLUENT 16.2. Specifically, the flow condition at 
the bottom boundary (for the cases with	ܭ௦ ൌ 1m and 5m) is determined based on the following wall 
function equations [13]: 

      
௎೛௨∗

ఛೢ ఘൗ
ൌ

ଵ

఑
ln ቀܧ

ఘ௨∗௬೛
ఓ

ቁ െ Δ(10)     ܤ 

∗ݑ ൌ ܤఓ଴.ଶହ݇଴.ହ ,     Δܥ ൌ
ଵ

఑
lnሺ1 ൅ ௌܭௌܥ

ାሻ      (11a,b) 

ௌܭ
ା ൌ
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௨ഓ
ఛݑ     ,  ൌ ට

ఛೢ
ఘ

       (12a,b) 

where ܷ௉ is the velocity at the centroid of the wall-adjacent cell (i.e. at ݕ ൌ  = ௣), κ = 0.4187 and Eݕ
9.793 are the von Karman constant and an empirical constant used in ANSYS FLUENT, respectively, 
 ௌ = 0.5 is the roughnessܥ ఓ = 0.09 is the eddy viscosity constant used in the Standard k-ε model, andܥ
constant used in this study. It should be noted that the nominal roughness height ܭ௦ used in this study 
is for ‘sand-grain’ type roughness (often used in engineering flow problems) but this is related to the 
aerodynamic roughness parameter ݕ଴ (or ‘ݖ଴’ often used in ABL flow problems) as ܭ௦ ൌ ሺܥ/ܧ௦ሻݕ଴ 
[14]. Therefore, the three different roughness heights considered in this study,	ܭ௦ ൌ 0m, 1m and 5m, 
correspond to ݕ଴ = 0m, 0.051m and 0.255m, respectively. Traditionally, this wall roughness model in 
ANSYS FLUENT had a limitation that the distance from the wall to the centroid of the wall-adjacent 
cell needed to be greater than the roughness height ܭ௦, which often caused difficulties in applying this 
model to ABL flow problems [14]. However, this limitation has been overcome in recent versions of 
ANSYS FLUENT by employing a remedial approach called ‘virtually shifting the wall’ [13], which, 
when the non-dimensional roughness height ܭ௦ା is in the ‘fully rough’ regime (ܭ௦ା ൒ 90), allows to 
virtually shift the wall by 50% of the roughness height, i.e. 

௣ሺୡ୭୰୰ୣୡ୲ୣୢሻݕ
ା ൌ ௣ሺ୭୰୧୥୧୬ୟ୪ሻݕ

ା ൅
௄ೄ
శ

ଶ
                  (13) 

This virtual wall shifting is justified on the assumption that roughness elements create a ‘blockage’ of 
approximately 50% of the roughness height [13]. This approach makes it possible to use a fine mesh 
near a rough wall with a large ܭ௦ value; therefore a sufficiently fine mesh designed for the case with 
௦ܭ ൌ 0m (to be described in detail in Section 3.3) can be used for ܭ௦ ൌ 1m and 5m as well without 
modifications. A validation study is presented in the Appendix to confirm that the wall shear stress ߬௪ 
calculated using the above model is insensitive to the size of wall-adjacent cells. 

All simulations are steady-state simulations and they are run for a very large number of iterations 
(approximately one million) until residuals and key variables, such as the bottom shear stress, are fully 
converged. This large number of iterations (to obtain a fully converged solution) is required due to the 
use of doubly periodic boundary conditions. Figure 3 shows examples of the convergence of spatially 
averaged bottom shear stress, 〈߬w〉, and the streamwise velocity averaged over the disc area, ்ܷ. 

3.3.  Computational grids 
Multi-block structured grids with hexahedral cells are used for all simulations. A 2D (cross-sectional) 
mesh is created first at one of the vertical (y-z) planes in the domain. This mesh has a minimum grid 
spacing of 0.01D inside and around the disc, and 0.001D above the bottom boundary (Figure 4a). This 
2D mesh is then extruded in the streamwise (x) direction to create the final 3D mesh. For different 
domain sizes, the same 2D mesh around the disc is used as a base but with increasing the horizontal 
dimension before performing the streamwise extrusion. For the streamwise direction, a uniform grid 
spacing of 0.01D is used between ݔ ൌ െ0.1D and 0.5D, with the disc located at ݔ ൌ 0, and allowing a 
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larger spacing outside this region, with a maximum spacing of approximately 0.15D (Figure 4b). This 
methodology ensures that all simulations are performed with the same high-quality mesh around the 
disc and near the bottom boundary. The total number of cells for the 3D domains varies between 
1.64 ൈ 10଺ for the 6D ൈ 6D case and 3.13 ൈ 10଺ for the 14D ൈ 14D case. 

3.4.  Results 
Figure 5 shows the ‘natural’ boundary layer profiles (streamwise velocity and turbulent kinetic energy 
or TKE) obtained with no disc resistance (K = 0) for the three different ground roughness cases. Note 
that, although not presented here, these ‘natural’ profiles are horizontally homogeneous across the 
entire domain due to the periodic boundary conditions. As explained in Section 3.1, these ‘empty box’ 
simulations are used to determine the ‘natural’ pressure gradient (to be used in the farm simulations 
with non-zero K values) as summarised in Table 1. Also, as described in Section 2.1, these ‘natural’ 
boundary layer profiles can be used to calculate parameters for comparison with the Nishino model, 
such as the farm-layer height (ܪி), the natural farm-layer wind speed (ܷி଴) and the natural bottom 
shear stress (߬௪଴). The farm-layer height, defined by Equation (2), was found to be ܪி ൌ  for all ܦ2.6
three different roughness cases in this study. 

      (a)      (b) 

      
Figure 3.  Examples of the convergence of solutions (for 4 cases with ܭ௦ ൌ 5m and K = 2): (a) 
horizontally averaged bottom shear stress 〈߬w〉;	and (b) disc-averaged streamwise velocity ்ܷ. 

 

(a) (b) 

Figure 4.  Computational mesh: (a) cross-sectional view around the disc (y-z plane); and (b) 
lateral view (x-y plane). 
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  (a) (b) 

Figure 5.  Boundary layer profiles for the ‘natural’ (K = 0) cases with three different bottom 
roughness heights: (a) streamwise velocity; and (b) turbulent kinetic energy. 

 

Table 2.  Summary of computational results for ܭ௦ = 0 m (ܷி଴ = 9.18 m/s, ߬௪଴ = 0.0643 Pa) 

Configuration ܥ/ߣ௙଴ ܥ ்ܥ ߚ ߙ ܭ௉ ߬௪/߬௪଴ ߛ 
Aligned, 6D × 6D 17.5 2 0.503 0.307 0.0478 0.0074 0.165 1.53 
Aligned, 7D × 7D 12.9 2 0.520 0.341 0.0631 0.0112 0.191 1.54 
Staggered, 6D × 6D 17.5 2 0.641 0.247 0.0503 0.0080 0.120 1.52 
Staggered, 7D × 7D 12.9 2 0.637 0.286 0.0666 0.0122 0.144 1.55 

 

Table 3.  Summary of computational results for ܭ௦ = 1 m (ܷி଴ = 8.34 m/s, ߬௪଴ = 0.2597 Pa) 

Configuration ܥ/ߣ௙଴ ܥ ்ܥ ߚ ߙ ܭ௉ ߬௪/߬௪଴ ߛ 
Aligned, 6D × 6D 3.58 2 0.517 0.551 0.163 0.0466 0.417 1.47 
Aligned, 7D × 7D 2.63 2 0.537 0.595 0.205 0.0655 0.463 1.48 
Staggered, 6D × 6D 3.58 2 0.644 0.472 0.185 0.0564 0.337 1.45 
Staggered, 7D × 7D 2.63 2 0.646 0.527 0.233 0.0794 0.389 1.48 
Staggered, 14D × 14D 0.66 2 0.642 0.778 0.499 0.250 0.673 1.58 
Staggered, 6D × 6D 3.58 0.5 0.866 0.626 0.147 0.0799 0.473 1.60 
Staggered, 7D × 7D 2.63 0.5 0.869 0.681 0.175 0.104 0.539 1.61 
Staggered, 14D × 14D 0.66 0.5 0.872 0.878 0.293 0.225 0.808 1.64 

 

Table 4.  Summary of computational results for ܭ௦ = 5 m (ܷி଴ = 8.01 m/s, ߬௪଴ = 0.3787 Pa) 

Configuration ܥ/ߣ௙଴ ܥ ்ܥ ߚ ߙ ܭ௉ ߬௪/߬௪଴ ߛ 
Aligned, 6D × 6D 2.26 2 0.525 0.628 0.218 0.0722 0.507 1.46 
Aligned, 7D × 7D 1.66 2 0.546 0.670 0.268 0.0982 0.555 1.47 
Staggered, 6D × 6D 2.26 2 0.649 0.549 0.254 0.0904 0.425 1.43 
Staggered, 7D × 7D 1.66 2 0.649 0.607 0.310 0.123 0.484 1.45 
Staggered, 14D × 14D 0.42 2 0.649 0.834 0.587 0.318 0.756 1.54 
Staggered, 6D × 6D 2.26 0.5 0.867 0.708 0.189 0.116 0.572 1.62 
Staggered, 7D × 7D 1.66 0.5 0.872 0.757 0.218 0.144 0.638 1.61 
Staggered, 14D × 14D 0.42 0.5 0.876 0.916 0.322 0.259 0.866 1.64 
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Once these ‘empty box’ simulations have been conducted, it is possible to run the farm simulations 
(i.e. pressure-driven boundary layer simulations with non-zero K values) and calculate the parameters 
described in the Nishino model, such as ܥ ,்ܥ ,ߚ ,ߙ௉ and ߛ, to evaluate the farm performance. The 
results are summarised in Tables 2, 3 and 4 for all scenarios investigated in this study, i.e. for three 
different roughness heights, three different domain sizes, two different array configurations (aligned 
and staggered) and two different disc resistance values. Note that the (normalised) farm density ܥ/ߣ௙଴ 
depends only on the roughness height and domain size and is therefore already known before running 
the farm simulations. Of particular interest is that the values of ߛ obtained from the farm simulations 
performed in this study are all around 1.5 to 1.6. This agrees with the prediction made by Nishino [8] 
that the value of ߛ should be less than 2 for ‘real’ arrays (such as the ‘aligned’ and ‘staggered’ arrays 
considered here) and also suggests that this parameter ߛ (which is the only empirical parameter in the 
model) can be calibrated relatively easily for a wide range of practical array configurations. 

Figure 6 shows a comparison between the farm simulations of ‘staggered’ arrays and the Nishino 
model [8] for the power coefficient ܥ௉ and thrust coefficient ்ܥ. Note that 1.5 = ߛ has been employed 
in the Nishino model for this comparison. As can be seen from the figure, the agreement is excellent 
for both high and low disc resistance cases (K = 2 and 0.5). This shows the usefulness of the Nishino 
model not only for providing an upper limit to the performance of ‘ideal’ arrays (as described in [8]) 
but also for predicting the performance of ‘staggered’ arrays with wide ranges of K and ܥ/ߣ௙଴ values. 
Most importantly, both simulations and theoretical predictions show a clear tendency that the optimal 
turbine resistance is smaller in a ‘dense’ wind farm than in a ‘sparse’ wind farm, i.e. low-resistance 
turbines (with K = 0.5 in this example) perform better than high-resistance turbines (with K = 2 in this 
example) when the normalised farm density ܥ/ߣ௙଴ is large. 

Although not presented in Figure 6, the simulations of ‘aligned’ arrays tend to give approximately 
10% to 20% lower ܥ௉ values compared to the ‘staggered’ array simulations (see Tables 2, 3 and 4) and 
the Nishino model. To predict the performance of such ‘less efficient’ arrays accurately, the negative 
effect of turbine wake interaction would need to be taken into account in the theoretical model. 

4.  Concluding remarks 
The results of 3D RANS simulations of ‘infinitely large’ wind farms presented above show that the 
simple 1D theoretical wind farm model proposed by Nishino [8] can be a good first approximation to 
the solution of this apparently complex 3D flow problem. In particular, it has been shown that the 
power coefficient of a number of ideal turbines (or actuator discs) arranged in a ‘staggered’ manner 

 (a) (b) 

 Figure 6. Comparisons between the 3D RANS simulations of staggered arrays and the Nishino 
model predictions (with 1.5 = ߛ): (a) power coefficient; and (b) thrust coefficient. 
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can be predicted very well as a function of the turbine resistance K and the normalised farm density 
 in the theoretical model. It has also been shown that ߛ ௙଴ by adjusting the only empirical parameterܥ/ߣ
the value of ߛ should be approximately 1.5 for all scenarios considered in this study. It should be noted 
that, although the 3D RANS simulations performed in this study rely on the Standard k-ε turbulence 
model (with a local modification around the disc edge) and therefore the results are not as realistic as 
LES (for example) in terms of the details of turbulent mixing behind the disc, the simulations have 
been performed with care regarding the mesh quality and convergence to obtain sufficiently accurate 
numerical solutions of the governing equations. The excellent agreement between the 3D simulation 
results (for ‘staggered’ arrays) and the 1D theoretical model shown earlier in Figure 6 suggests the 
usefulness of the 1D theoretical model. As an example of how the theoretical model can be useful, it 
has also been shown that the optimal turbine resistance can be predicted easily as a function of the 
normalised farm density (and this prediction seems almost as accurate as what can be made using 3D 
RANS simulations). This analysis could be extended further in future studies to explore, for example, 
an optimal turbine rotor design as a function of the normalised farm density. 

Although all simulation results presented in this paper suggest that the theoretical farm model is 
promising, there are still many important issues to be addressed in future studies. For example, the size 
and ‘hub-height’ of the rotors (relative to the thickness of the ABL) have been fixed for all scenarios 
in this study; these geometrical parameters, however, may affect the value of ߛ  in the theoretical 
model. Another physical factor that may affect the value of ߛ is the stability of the ABL. Hence a more 
comprehensive set of numerical simulations would be necessary to calibrate the empirical parameter ߛ 
in the theoretical model for a wider range of problems. Apart from the calibration of ߛ, it would also 
be important to further examine the validity of using the classical actuator disc theory as the local-
scale flow model in this two-scale coupled wind farm model. The present study has shown that this 
approach works well for ‘fully staggered’ arrays with a range of inter-disc spacing (from 6D to 14D); 
however this would not be the case when the inter-disc spacing is much smaller and there are strong 
(usually negative) interactions of individual turbine wakes. For such dense wind farms, some sort of 
corrections to the local-scale flow model would be required to account for the effect of turbine wake 
interactions. In addition, another type of correction to account for the influence of farm size would be 
necessary for the theoretical model to be applied to real (not ‘infinitely’ large) wind farms. Finally, but 
not least, the present study employs the assumption that the flow over the farm is driven by a constant 
streamwise pressure gradient; this is a commonly used assumption but not the case in the real world 
(as discussed in e.g. [6]). Most of these issues are currently under investigation. 
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Appendix 
As mentioned in Section 3.2, in this study we have used the ‘sand-grain’ type wall roughness model 
available in ANSYS FLUENT 16.2 to simulate the effect of bottom (ground) roughness. In order to 
use this approach, the near-wall flow must be in the ‘fully rough’ regime. This condition is satisfied if 
௦ାܭ ൒ 90. Blocken et al. [14] noted that in most cases, an ABL flow is in this ‘fully rough’ regime as 
the roughness is usually large enough to neglect the viscous sublayer. This is the case in the present 
study as well; it has been confirmed that ܭ௦ା ൒ 90 in all simulations with ܭ௦ ൌ 1m and 5m. 

 To confirm that the wall shear stress calculated using this wall function approach is insensitive to 
the size of wall-adjacent cells, we performed (separately from the farm simulations presented in the 
main part of this paper) a set of 2D RANS simulations of boundary layer flows. A short and tall 2D 
domain of (Lx, Ly) = (100m, 1000m) was employed with streamwise (x) periodic boundary conditions. 
Four different near-wall grid resolutions (0.001m, 0.01m, 0.1m and 1m) and seven different roughness 
heights (݇௦= 0.005m, 0.01m, 0.05m, 0.1m, 0.5m, 1m and 5m) were considered, leading to 28 different 
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simulation cases. Note that some of these cases are designed such that the size of wall-adjacent cells is 
larger than the roughness height, whereas the other cases are not. Figure 7 summarises the results of 
bottom shear stress obtained in these 2D boundary layer simulations. As can be seen from the figure, 
the sensitivity of the bottom shear stress to the wall-adjacent cell size is low. This supports the validity 
of the roughness modelling approach employed in the farm simulations in this study. 

 

 
Figure 7.  Sensitivity of the bottom shear stress to the size of wall-adjacent cells in 2D periodic 

boundary layer simulations (for seven different roughness heights). 
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